Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130420
Название: | Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System |
Авторы: | Zhang, G. Daraz, A. Khan, I. A. Basit, A. Khan, M. I. Ullah, M. |
Дата публикации: | 2023 |
Издатель: | MDPI |
Библиографическое описание: | Zhang, G, Daraz, A, Khan, IA, Basit, A, Khan, MI & Ullah, M 2023, 'Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System', Fractal and Fractional, Том. 7, № 4, 315. https://doi.org/10.3390/fractalfract7040315 Zhang, G., Daraz, A., Khan, I. A., Basit, A., Khan, M. I., & Ullah, M. (2023). Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System. Fractal and Fractional, 7(4), [315]. https://doi.org/10.3390/fractalfract7040315 |
Аннотация: | This work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative with a filter term to handle the frequency regulation challenges of a hybrid power system integrated with renewable energy sources. Driver training-based optimization, an advanced stochastic meta-heuristic method based on human learning, is employed to optimize the gains of the proposed cascaded controller. The performance of the proposed novel controller was compared to that of other control methods. In addition, the results of driver training-based optimization are compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive algorithm and jellyfish swarm optimization. The suggested controller and design technique have been evaluated and validated under a variety of loading circumstances and scenarios, as well as their resistance to power system parameter uncertainties. The results indicate the new controller’s steady operation and frequency regulation capability with an optimal controller coefficient and without the prerequisite for a complex layout procedure. © 2023 by the authors. |
Ключевые слова: | DRIVER TRAINING-BASED OPTIMIZATION FRACTIONAL ORDER CONTROLLER HEURISTIC TECHNIQUES LOAD FREQUENCY CONTROL OPTIMIZATION TECHNIQUES POWER SYSTEM RENEWABLE ENERGY RESOURCES |
URI: | http://elar.urfu.ru/handle/10995/130420 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85153786574 |
Идентификатор WOS: | 000978202300001 |
Идентификатор PURE: | 38491001 |
ISSN: | 2504-3110 |
DOI: | 10.3390/fractalfract7040315 |
Сведения о поддержке: | 20100859001 This work is supported by the “Young Talent Sub-project of Ningbo Yongjiang Talent Introduction Programme under grant no. 20100859001.” |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85153786574.pdf | 3,6 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons