Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130420
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZhang, G.en
dc.contributor.authorDaraz, A.en
dc.contributor.authorKhan, I. A.en
dc.contributor.authorBasit, A.en
dc.contributor.authorKhan, M. I.en
dc.contributor.authorUllah, M.en
dc.date.accessioned2024-04-05T16:20:12Z-
dc.date.available2024-04-05T16:20:12Z-
dc.date.issued2023-
dc.identifier.citationZhang, G, Daraz, A, Khan, IA, Basit, A, Khan, MI & Ullah, M 2023, 'Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System', Fractal and Fractional, Том. 7, № 4, 315. https://doi.org/10.3390/fractalfract7040315harvard_pure
dc.identifier.citationZhang, G., Daraz, A., Khan, I. A., Basit, A., Khan, M. I., & Ullah, M. (2023). Driver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power System. Fractal and Fractional, 7(4), [315]. https://doi.org/10.3390/fractalfract7040315apa_pure
dc.identifier.issn2504-3110-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85153786574&doi=10.3390%2ffractalfract7040315&partnerID=40&md5=3749ce9bae03fa39a985b890b8f014371
dc.identifier.otherhttps://www.mdpi.com/2504-3110/7/4/315/pdf?version=1681883906pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130420-
dc.description.abstractThis work provides an enhanced novel cascaded controller-based frequency stabilization of a two-region interconnected power system incorporating electric vehicles. The proposed controller combines a cascade structure comprising a fractional-order proportional integrator and a proportional derivative with a filter term to handle the frequency regulation challenges of a hybrid power system integrated with renewable energy sources. Driver training-based optimization, an advanced stochastic meta-heuristic method based on human learning, is employed to optimize the gains of the proposed cascaded controller. The performance of the proposed novel controller was compared to that of other control methods. In addition, the results of driver training-based optimization are compared to those of other recent meta-heuristic algorithms, such as the imperialist competitive algorithm and jellyfish swarm optimization. The suggested controller and design technique have been evaluated and validated under a variety of loading circumstances and scenarios, as well as their resistance to power system parameter uncertainties. The results indicate the new controller’s steady operation and frequency regulation capability with an optimal controller coefficient and without the prerequisite for a complex layout procedure. © 2023 by the authors.en
dc.description.sponsorship20100859001en
dc.description.sponsorshipThis work is supported by the “Young Talent Sub-project of Ningbo Yongjiang Talent Introduction Programme under grant no. 20100859001.”en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceFractal and Fractional2
dc.sourceFractal and Fractionalen
dc.subjectDRIVER TRAINING-BASED OPTIMIZATIONen
dc.subjectFRACTIONAL ORDER CONTROLLERen
dc.subjectHEURISTIC TECHNIQUESen
dc.subjectLOAD FREQUENCY CONTROLen
dc.subjectOPTIMIZATION TECHNIQUESen
dc.subjectPOWER SYSTEMen
dc.subjectRENEWABLE ENERGY RESOURCESen
dc.titleDriver Training Based Optimized Fractional Order PI-PDF Controller for Frequency Stabilization of Diverse Hybrid Power Systemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/fractalfract7040315-
dc.identifier.scopus85153786574-
local.contributor.employeeZhang, G., School of Information Science and Engineering, NingboTech University, Ningbo, 315100, Chinaen
local.contributor.employeeDaraz, A., School of Information Science and Engineering, NingboTech University, Ningbo, 315100, China, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, Chinaen
local.contributor.employeeKhan, I.A., Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Federal Territory of Kuala Lumpur, 50603, Malaysiaen
local.contributor.employeeBasit, A., School of Information Science and Engineering, NingboTech University, Ningbo, 315100, China, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, Chinaen
local.contributor.employeeKhan, M.I., College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210000, Chinaen
local.contributor.employeeUllah, M., Graduate School of Economics and Management, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.issue4-
local.volume7-
dc.identifier.wos000978202300001-
local.contributor.departmentSchool of Information Science and Engineering, NingboTech University, Ningbo, 315100, Chinaen
local.contributor.departmentCollege of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, Chinaen
local.contributor.departmentDepartment of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Federal Territory of Kuala Lumpur, 50603, Malaysiaen
local.contributor.departmentCollege of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, 210000, Chinaen
local.contributor.departmentGraduate School of Economics and Management, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure38491001-
local.description.order315-
local.identifier.eid2-s2.0-85153786574-
local.identifier.wosWOS:000978202300001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85153786574.pdf3,6 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons