Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130232
Название: Engagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Series
Авторы: Nikulchev, E.
Gusev, A.
Gazanova, N.
Magomedov, S.
Alexeenko, A.
Malykh, A.
Kolyasnikov, P.
Malykh, S.
Дата публикации: 2023
Издатель: MDPI
Библиографическое описание: Nikulchev, E, Gusev, A, Gazanova, N, Magomedov, S, Alexeenko, A, Malykh, A, Kolyasnikov, P & Malykh, S 2023, 'Engagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Series', Education Sciences, Том. 13, № 2, 141. https://doi.org/10.3390/educsci13020141
Nikulchev, E., Gusev, A., Gazanova, N., Magomedov, S., Alexeenko, A., Malykh, A., Kolyasnikov, P., & Malykh, S. (2023). Engagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Series. Education Sciences, 13(2), [141]. https://doi.org/10.3390/educsci13020141
Аннотация: Contemporary digital platforms provide a large number of web services for learning and professional growth. In most cases, educational web services only control access when connecting to resources and platforms. However, for educational and similar resources (internet surveys, online research), which are characterized by interactive interaction with the platform, it is important to assess user engagement in the learning process. A fairly large body of research is devoted to assessing learner engagement based on automatic, semi-automatic, and manual methods. Those methods include self-observation, observation checklists, engagement tracing based on learner reaction time and accuracy, computer vision methods (analysis of facial expressions, gestures, and postures, eye movements), methods for analyzing body sensor data, etc. Computer vision and body sensor methods for assessing engagement give a more complete objective picture of the learner’s state for further analysis in comparison with the methods of engagement tracing based on learner’s reaction time, however, they require the presence of appropriate sensors, which may often not be applicable in a particular context. Sensory observation is explicit to the learner and is an additional stressor, such as knowing the learner is being captured by the webcam while solving a problem. Thus, the further development of the hidden engagement assessment methods is relevant, while new computationally efficient techniques of converting the initial signal about the learner’s reaction time to assess engagement can be applied. On the basis of the hypothesis about the randomness of the dynamics of the time series, the largest Lyapunov exponent can be calculated for the time series formed from the reaction time of learners during prolonged work with web interfaces to assess the learner’s engagement. A feature of the proposed engagement assessment method is the relatively high computational efficiency, absence of high traffic loads in comparison with computer vision as well as secrecy from the learner coupled with no processing of learner’s personal or physical data except the reaction time to questions displayed on the screen. The results of experimental studies on a large amount of data are presented, demonstrating the applicability of the selected technique for learner’s engagement assessment. © 2023 by the authors.
Ключевые слова: CLICKER
ENGAGEMENT ASSESSMENT
INVOLVEMENT
LARGEST LYAPUNOV EXPONENT
REACTION TIME
WEB SERVICE
URI: http://elar.urfu.ru/handle/10995/130232
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85148956544
Идентификатор WOS: 000938668300001
Идентификатор PURE: 35468321
ISSN: 2227-7102
DOI: 10.3390/educsci13020141
Сведения о поддержке: Russian Science Foundation, RSF
This study was supported by a grant (No. 17-78-30028) from the Russian Science Foundation.
Карточка проекта РНФ: 17-78-30028
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85148956544.pdf2,53 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons