Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130232
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNikulchev, E.en
dc.contributor.authorGusev, A.en
dc.contributor.authorGazanova, N.en
dc.contributor.authorMagomedov, S.en
dc.contributor.authorAlexeenko, A.en
dc.contributor.authorMalykh, A.en
dc.contributor.authorKolyasnikov, P.en
dc.contributor.authorMalykh, S.en
dc.date.accessioned2024-04-05T16:16:23Z-
dc.date.available2024-04-05T16:16:23Z-
dc.date.issued2023-
dc.identifier.citationNikulchev, E, Gusev, A, Gazanova, N, Magomedov, S, Alexeenko, A, Malykh, A, Kolyasnikov, P & Malykh, S 2023, 'Engagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Series', Education Sciences, Том. 13, № 2, 141. https://doi.org/10.3390/educsci13020141harvard_pure
dc.identifier.citationNikulchev, E., Gusev, A., Gazanova, N., Magomedov, S., Alexeenko, A., Malykh, A., Kolyasnikov, P., & Malykh, S. (2023). Engagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Series. Education Sciences, 13(2), [141]. https://doi.org/10.3390/educsci13020141apa_pure
dc.identifier.issn2227-7102-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148956544&doi=10.3390%2feducsci13020141&partnerID=40&md5=00a9ba0c82a4e1d935cffb8a99f4dc551
dc.identifier.otherhttps://www.mdpi.com/2227-7102/13/2/141/pdf?version=1675174818pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130232-
dc.description.abstractContemporary digital platforms provide a large number of web services for learning and professional growth. In most cases, educational web services only control access when connecting to resources and platforms. However, for educational and similar resources (internet surveys, online research), which are characterized by interactive interaction with the platform, it is important to assess user engagement in the learning process. A fairly large body of research is devoted to assessing learner engagement based on automatic, semi-automatic, and manual methods. Those methods include self-observation, observation checklists, engagement tracing based on learner reaction time and accuracy, computer vision methods (analysis of facial expressions, gestures, and postures, eye movements), methods for analyzing body sensor data, etc. Computer vision and body sensor methods for assessing engagement give a more complete objective picture of the learner’s state for further analysis in comparison with the methods of engagement tracing based on learner’s reaction time, however, they require the presence of appropriate sensors, which may often not be applicable in a particular context. Sensory observation is explicit to the learner and is an additional stressor, such as knowing the learner is being captured by the webcam while solving a problem. Thus, the further development of the hidden engagement assessment methods is relevant, while new computationally efficient techniques of converting the initial signal about the learner’s reaction time to assess engagement can be applied. On the basis of the hypothesis about the randomness of the dynamics of the time series, the largest Lyapunov exponent can be calculated for the time series formed from the reaction time of learners during prolonged work with web interfaces to assess the learner’s engagement. A feature of the proposed engagement assessment method is the relatively high computational efficiency, absence of high traffic loads in comparison with computer vision as well as secrecy from the learner coupled with no processing of learner’s personal or physical data except the reaction time to questions displayed on the screen. The results of experimental studies on a large amount of data are presented, demonstrating the applicability of the selected technique for learner’s engagement assessment. © 2023 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSFen
dc.description.sponsorshipThis study was supported by a grant (No. 17-78-30028) from the Russian Science Foundation.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.relationinfo:eu-repo/grantAgreement/RSF//17-78-30028en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceEducation Sciences2
dc.sourceEducation Sciencesen
dc.subjectCLICKERen
dc.subjectENGAGEMENT ASSESSMENTen
dc.subjectINVOLVEMENTen
dc.subjectLARGEST LYAPUNOV EXPONENTen
dc.subjectREACTION TIMEen
dc.subjectWEB SERVICEen
dc.titleEngagement Assessment for the Educational Web-Service Based on Largest Lyapunov Exponent Calculation for User Reaction Time Seriesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/educsci13020141-
dc.identifier.scopus85148956544-
local.contributor.employeeNikulchev, E., Department of Digital Data Processing Technologies, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.employeeGusev, A., Center of Advanced Technologies and Nanomaterials, Kuban State Technological University, Krasnodar, 350072, Russian Federationen
local.contributor.employeeGazanova, N., Department of the Intelligent Cyber-Security System Department, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.employeeMagomedov, S., Department of the Intelligent Cyber-Security System Department, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.employeeAlexeenko, A., Department of Applied Information Technologies, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.employeeMalykh, A., Center of Population Research, Ural Institute of Humanities, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeKolyasnikov, P., Center of Population Research, Ural Institute of Humanities, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeMalykh, S., Developmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, Moscow, 125009, Russian Federation, Department of Psychology, Lomonosov Moscow State University, Moscow, 119991, Russian Federationen
local.issue2-
local.volume13-
dc.identifier.wos000938668300001-
local.contributor.departmentDepartment of Digital Data Processing Technologies, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.departmentCenter of Advanced Technologies and Nanomaterials, Kuban State Technological University, Krasnodar, 350072, Russian Federationen
local.contributor.departmentDepartment of the Intelligent Cyber-Security System Department, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.departmentDepartment of Applied Information Technologies, MIREA—Russian Technological University, Moscow, 119454, Russian Federationen
local.contributor.departmentCenter of Population Research, Ural Institute of Humanities, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentDevelopmental Behavioral Genetics Lab, Psychological Institute of Russian Academy of Education, Moscow, 125009, Russian Federationen
local.contributor.departmentDepartment of Psychology, Lomonosov Moscow State University, Moscow, 119991, Russian Federationen
local.identifier.pure35468321-
local.description.order141-
local.identifier.eid2-s2.0-85148956544-
local.fund.rsf17-78-30028-
local.identifier.wosWOS:000938668300001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85148956544.pdf2,53 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons