Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130206
Название: Note on the Banach Problem 1 of condensations of Banach spaces onto compacta
Авторы: Osipov, A. V.
Дата публикации: 2023
Издатель: University of Nis
Библиографическое описание: Osipov, AV 2023, 'Note on the Banach Problem 1 of condensations of Banach spaces onto compacta', Filomat, Том. 37, № 7, стр. 2183-2186. https://doi.org/10.2298/FIL2307183O
Osipov, A. V. (2023). Note on the Banach Problem 1 of condensations of Banach spaces onto compacta. Filomat, 37(7), 2183-2186. https://doi.org/10.2298/FIL2307183O
Аннотация: It is consistent with any possible value of the continuum c that every infinite-dimensional Banach space of density ≤ c condenses onto the Hilbert cube. Let µ < c be a cardinal of uncountable cofinality. It is consistent that the continuum be arbitrary large, no Banach space X of density γ, µ < γ < c, condenses onto a compact metric space, but any Banach space of density µ admits a condensation onto a compact metric space. In particular, for µ = ω1, it is consistent that c is arbitrarily large, no Banach space of density γ, ω1 < γ < c, condenses onto a compact metric space. These results imply a complete answer to the Problem 1 in the Scottish Book for Banach spaces: When does a Banach space X admit a bijective continuous mapping onto a compact metric space?. © 2023, University of Nis. All rights reserved.
Ключевые слова: BANACH PROBLEM
CONDENSATION
DENSITY
METRIC COMPACT SPACE
URI: http://elar.urfu.ru/handle/10995/130206
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85148380594
Идентификатор WOS: 000932458300016
Идентификатор PURE: 35499357
ISSN: 0354-5180
DOI: 10.2298/FIL2307183O
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85148380594.pdf186,06 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.