Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/130206
Title: | Note on the Banach Problem 1 of condensations of Banach spaces onto compacta |
Authors: | Osipov, A. V. |
Issue Date: | 2023 |
Publisher: | University of Nis |
Citation: | Osipov, AV 2023, 'Note on the Banach Problem 1 of condensations of Banach spaces onto compacta', Filomat, Том. 37, № 7, стр. 2183-2186. https://doi.org/10.2298/FIL2307183O Osipov, A. V. (2023). Note on the Banach Problem 1 of condensations of Banach spaces onto compacta. Filomat, 37(7), 2183-2186. https://doi.org/10.2298/FIL2307183O |
Abstract: | It is consistent with any possible value of the continuum c that every infinite-dimensional Banach space of density ≤ c condenses onto the Hilbert cube. Let µ < c be a cardinal of uncountable cofinality. It is consistent that the continuum be arbitrary large, no Banach space X of density γ, µ < γ < c, condenses onto a compact metric space, but any Banach space of density µ admits a condensation onto a compact metric space. In particular, for µ = ω1, it is consistent that c is arbitrarily large, no Banach space of density γ, ω1 < γ < c, condenses onto a compact metric space. These results imply a complete answer to the Problem 1 in the Scottish Book for Banach spaces: When does a Banach space X admit a bijective continuous mapping onto a compact metric space?. © 2023, University of Nis. All rights reserved. |
Keywords: | BANACH PROBLEM CONDENSATION DENSITY METRIC COMPACT SPACE |
URI: | http://elar.urfu.ru/handle/10995/130206 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85148380594 |
WOS ID: | 000932458300016 |
PURE ID: | 35499357 |
ISSN: | 0354-5180 |
DOI: | 10.2298/FIL2307183O |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85148380594.pdf | 186,06 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.