Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130193
Название: | An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay |
Авторы: | Zaky, M. A. Van, Bockstal, K. Taha, T. R. Suragan, D. Hendy, A. S. |
Дата публикации: | 2023 |
Издатель: | Elsevier B.V. |
Библиографическое описание: | Zaky, MA, Van Bockstal, K, Taha, TR, Suragan, D & Hendy, AS 2023, 'An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay', Journal of Computational and Applied Mathematics, Том. 420, 114832. https://doi.org/10.1016/j.cam.2022.114832 Zaky, M. A., Van Bockstal, K., Taha, T. R., Suragan, D., & Hendy, A. S. (2023). An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay. Journal of Computational and Applied Mathematics, 420, [114832]. https://doi.org/10.1016/j.cam.2022.114832 |
Аннотация: | A linearized spectral Galerkin/finite difference approach is developed for variable fractional-order nonlinear diffusion–reaction equations with a fixed time delay. The temporal discretization for the variable-order fractional derivative is performed by the L1-approximation. An appropriate basis function in terms of Legendre polynomials is used to construct the Galerkin spectral method for the spatial discretization of the second-order spatial operator. The main advantage of the proposed approach is that the implementation of the iterative process is avoided for the nonlinear term in the variable fractional-order problem. Convergence and stability estimates for the constructed scheme are proved theoretically by discrete energy estimates. Some numerical experiments are finally provided to demonstrate the efficiency and accuracy of the theoretical findings. © 2022 Elsevier B.V. |
Ключевые слова: | CONVERGENCE AND STABILITY ESTIMATES GALERKIN SPECTRAL METHOD L1 DIFFERENCE SCHEME TIME DELAY VARIABLE ORDER DIFFUSION DIFFUSION GALERKIN METHODS ITERATIVE METHODS NONLINEAR EQUATIONS SPECTROSCOPY TIMING CIRCUITS CONVERGENCE AND STABILITY CONVERGENCE ESTIMATES DIFFERENCE SCHEMES GALERKIN SPECTRAL METHOD L1 DIFFERENCE SCHEME ORDERING DIFFUSION STABILITY ESTIMATES TIME-DELAYS VARIABLE ORDER DIFFUSION VARIABLES ORDERING TIME DELAY |
URI: | http://elar.urfu.ru/handle/10995/130193 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85138465521 |
Идентификатор WOS: | 000888833400024 |
Идентификатор PURE: | 30978778 |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2022.114832 |
Сведения о поддержке: | 091019CRP2120; Fonds Wetenschappelijk Onderzoek, FWO: 106016/12P2919N; Russian Science Foundation, RSF: 22-21-00075; Nazarbayev University, NU The first and the fourth authors were supported by the Nazarbayev University, Kazakhstan Program 091019CRP2120 . K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders, Belgium ( 106016/12P2919N ). A. S. Hendy wishes to acknowledge the support of the RSF, Russia grant, project 22-21-00075 . |
Карточка проекта РНФ: | 22-21-00075 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85138465521.pdf | 1,65 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.