Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130193
Title: An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay
Authors: Zaky, M. A.
Van, Bockstal, K.
Taha, T. R.
Suragan, D.
Hendy, A. S.
Issue Date: 2023
Publisher: Elsevier B.V.
Citation: Zaky, MA, Van Bockstal, K, Taha, TR, Suragan, D & Hendy, AS 2023, 'An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay', Journal of Computational and Applied Mathematics, Том. 420, 114832. https://doi.org/10.1016/j.cam.2022.114832
Zaky, M. A., Van Bockstal, K., Taha, T. R., Suragan, D., & Hendy, A. S. (2023). An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay. Journal of Computational and Applied Mathematics, 420, [114832]. https://doi.org/10.1016/j.cam.2022.114832
Abstract: A linearized spectral Galerkin/finite difference approach is developed for variable fractional-order nonlinear diffusion–reaction equations with a fixed time delay. The temporal discretization for the variable-order fractional derivative is performed by the L1-approximation. An appropriate basis function in terms of Legendre polynomials is used to construct the Galerkin spectral method for the spatial discretization of the second-order spatial operator. The main advantage of the proposed approach is that the implementation of the iterative process is avoided for the nonlinear term in the variable fractional-order problem. Convergence and stability estimates for the constructed scheme are proved theoretically by discrete energy estimates. Some numerical experiments are finally provided to demonstrate the efficiency and accuracy of the theoretical findings. © 2022 Elsevier B.V.
Keywords: CONVERGENCE AND STABILITY ESTIMATES
GALERKIN SPECTRAL METHOD
L1 DIFFERENCE SCHEME
TIME DELAY
VARIABLE ORDER DIFFUSION
DIFFUSION
GALERKIN METHODS
ITERATIVE METHODS
NONLINEAR EQUATIONS
SPECTROSCOPY
TIMING CIRCUITS
CONVERGENCE AND STABILITY
CONVERGENCE ESTIMATES
DIFFERENCE SCHEMES
GALERKIN SPECTRAL METHOD
L1 DIFFERENCE SCHEME
ORDERING DIFFUSION
STABILITY ESTIMATES
TIME-DELAYS
VARIABLE ORDER DIFFUSION
VARIABLES ORDERING
TIME DELAY
URI: http://elar.urfu.ru/handle/10995/130193
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85138465521
WOS ID: 000888833400024
PURE ID: 30978778
ISSN: 0377-0427
DOI: 10.1016/j.cam.2022.114832
Sponsorship: 091019CRP2120; Fonds Wetenschappelijk Onderzoek, FWO: 106016/12P2919N; Russian Science Foundation, RSF: 22-21-00075; Nazarbayev University, NU
The first and the fourth authors were supported by the Nazarbayev University, Kazakhstan Program 091019CRP2120 . K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders, Belgium ( 106016/12P2919N ). A. S. Hendy wishes to acknowledge the support of the RSF, Russia grant, project 22-21-00075 .
RSCF project card: 22-21-00075
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85138465521.pdf1,65 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.