Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/130193
Title: | An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay |
Authors: | Zaky, M. A. Van, Bockstal, K. Taha, T. R. Suragan, D. Hendy, A. S. |
Issue Date: | 2023 |
Publisher: | Elsevier B.V. |
Citation: | Zaky, MA, Van Bockstal, K, Taha, TR, Suragan, D & Hendy, AS 2023, 'An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay', Journal of Computational and Applied Mathematics, Том. 420, 114832. https://doi.org/10.1016/j.cam.2022.114832 Zaky, M. A., Van Bockstal, K., Taha, T. R., Suragan, D., & Hendy, A. S. (2023). An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay. Journal of Computational and Applied Mathematics, 420, [114832]. https://doi.org/10.1016/j.cam.2022.114832 |
Abstract: | A linearized spectral Galerkin/finite difference approach is developed for variable fractional-order nonlinear diffusion–reaction equations with a fixed time delay. The temporal discretization for the variable-order fractional derivative is performed by the L1-approximation. An appropriate basis function in terms of Legendre polynomials is used to construct the Galerkin spectral method for the spatial discretization of the second-order spatial operator. The main advantage of the proposed approach is that the implementation of the iterative process is avoided for the nonlinear term in the variable fractional-order problem. Convergence and stability estimates for the constructed scheme are proved theoretically by discrete energy estimates. Some numerical experiments are finally provided to demonstrate the efficiency and accuracy of the theoretical findings. © 2022 Elsevier B.V. |
Keywords: | CONVERGENCE AND STABILITY ESTIMATES GALERKIN SPECTRAL METHOD L1 DIFFERENCE SCHEME TIME DELAY VARIABLE ORDER DIFFUSION DIFFUSION GALERKIN METHODS ITERATIVE METHODS NONLINEAR EQUATIONS SPECTROSCOPY TIMING CIRCUITS CONVERGENCE AND STABILITY CONVERGENCE ESTIMATES DIFFERENCE SCHEMES GALERKIN SPECTRAL METHOD L1 DIFFERENCE SCHEME ORDERING DIFFUSION STABILITY ESTIMATES TIME-DELAYS VARIABLE ORDER DIFFUSION VARIABLES ORDERING TIME DELAY |
URI: | http://elar.urfu.ru/handle/10995/130193 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85138465521 |
WOS ID: | 000888833400024 |
PURE ID: | 30978778 |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2022.114832 |
Sponsorship: | 091019CRP2120; Fonds Wetenschappelijk Onderzoek, FWO: 106016/12P2919N; Russian Science Foundation, RSF: 22-21-00075; Nazarbayev University, NU The first and the fourth authors were supported by the Nazarbayev University, Kazakhstan Program 091019CRP2120 . K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders, Belgium ( 106016/12P2919N ). A. S. Hendy wishes to acknowledge the support of the RSF, Russia grant, project 22-21-00075 . |
RSCF project card: | 22-21-00075 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85138465521.pdf | 1,65 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.