Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130193
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Zaky, M. A. | en |
dc.contributor.author | Van, Bockstal, K. | en |
dc.contributor.author | Taha, T. R. | en |
dc.contributor.author | Suragan, D. | en |
dc.contributor.author | Hendy, A. S. | en |
dc.date.accessioned | 2024-04-05T16:15:20Z | - |
dc.date.available | 2024-04-05T16:15:20Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Zaky, MA, Van Bockstal, K, Taha, TR, Suragan, D & Hendy, AS 2023, 'An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay', Journal of Computational and Applied Mathematics, Том. 420, 114832. https://doi.org/10.1016/j.cam.2022.114832 | harvard_pure |
dc.identifier.citation | Zaky, M. A., Van Bockstal, K., Taha, T. R., Suragan, D., & Hendy, A. S. (2023). An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay. Journal of Computational and Applied Mathematics, 420, [114832]. https://doi.org/10.1016/j.cam.2022.114832 | apa_pure |
dc.identifier.issn | 0377-0427 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138465521&doi=10.1016%2fj.cam.2022.114832&partnerID=40&md5=52c6e6c0015882d5ce473804bbb33c9b | 1 |
dc.identifier.other | https://biblio.ugent.be/publication/01GP0NDAYERJH7A88PNDXJGKBK/file/01GP0NPQ7Y324TKAH15P6J80DX.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130193 | - |
dc.description.abstract | A linearized spectral Galerkin/finite difference approach is developed for variable fractional-order nonlinear diffusion–reaction equations with a fixed time delay. The temporal discretization for the variable-order fractional derivative is performed by the L1-approximation. An appropriate basis function in terms of Legendre polynomials is used to construct the Galerkin spectral method for the spatial discretization of the second-order spatial operator. The main advantage of the proposed approach is that the implementation of the iterative process is avoided for the nonlinear term in the variable fractional-order problem. Convergence and stability estimates for the constructed scheme are proved theoretically by discrete energy estimates. Some numerical experiments are finally provided to demonstrate the efficiency and accuracy of the theoretical findings. © 2022 Elsevier B.V. | en |
dc.description.sponsorship | 091019CRP2120; Fonds Wetenschappelijk Onderzoek, FWO: 106016/12P2919N; Russian Science Foundation, RSF: 22-21-00075; Nazarbayev University, NU | en |
dc.description.sponsorship | The first and the fourth authors were supported by the Nazarbayev University, Kazakhstan Program 091019CRP2120 . K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders, Belgium ( 106016/12P2919N ). A. S. Hendy wishes to acknowledge the support of the RSF, Russia grant, project 22-21-00075 . | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.relation | info:eu-repo/grantAgreement/RSF//22-21-00075 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Journal of Computational and Applied Mathematics | 2 |
dc.source | Journal of Computational and Applied Mathematics | en |
dc.subject | CONVERGENCE AND STABILITY ESTIMATES | en |
dc.subject | GALERKIN SPECTRAL METHOD | en |
dc.subject | L1 DIFFERENCE SCHEME | en |
dc.subject | TIME DELAY | en |
dc.subject | VARIABLE ORDER DIFFUSION | en |
dc.subject | DIFFUSION | en |
dc.subject | GALERKIN METHODS | en |
dc.subject | ITERATIVE METHODS | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.subject | SPECTROSCOPY | en |
dc.subject | TIMING CIRCUITS | en |
dc.subject | CONVERGENCE AND STABILITY | en |
dc.subject | CONVERGENCE ESTIMATES | en |
dc.subject | DIFFERENCE SCHEMES | en |
dc.subject | GALERKIN SPECTRAL METHOD | en |
dc.subject | L1 DIFFERENCE SCHEME | en |
dc.subject | ORDERING DIFFUSION | en |
dc.subject | STABILITY ESTIMATES | en |
dc.subject | TIME-DELAYS | en |
dc.subject | VARIABLE ORDER DIFFUSION | en |
dc.subject | VARIABLES ORDERING | en |
dc.subject | TIME DELAY | en |
dc.title | An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion–reaction equations with fixed delay | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.cam.2022.114832 | - |
dc.identifier.scopus | 85138465521 | - |
local.contributor.employee | Zaky, M.A., Department of Applied Mathematics, National Research Centre, Dokki, 33 El-Bohouth St., Giza, 12622, Egypt | en |
local.contributor.employee | Van Bockstal, K., Research Group NaM2, Department of Electronics and Information systems, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium | en |
local.contributor.employee | Taha, T.R., Department of Computer Science, University of Georgia, Athens, GA 30602-7404, United States | en |
local.contributor.employee | Suragan, D., Department of Mathematics, Nazarbayev University, Nur-Sultan, Kazakhstan | en |
local.contributor.employee | Hendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.volume | 420 | - |
dc.identifier.wos | 000888833400024 | - |
local.contributor.department | Department of Applied Mathematics, National Research Centre, Dokki, 33 El-Bohouth St., Giza, 12622, Egypt | en |
local.contributor.department | Research Group NaM2, Department of Electronics and Information systems, Ghent University, Krijgslaan 281, Ghent, 9000, Belgium | en |
local.contributor.department | Department of Computer Science, University of Georgia, Athens, GA 30602-7404, United States | en |
local.contributor.department | Department of Mathematics, Nazarbayev University, Nur-Sultan, Kazakhstan | en |
local.contributor.department | Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.identifier.pure | 30978778 | - |
local.description.order | 114832 | - |
local.identifier.eid | 2-s2.0-85138465521 | - |
local.fund.rsf | 22-21-00075 | - |
local.identifier.wos | WOS:000888833400024 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85138465521.pdf | 1,65 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.