Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/118411
Title: Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives
Authors: Gomoyunov, M. I.
Issue Date: 2021
Publisher: Pleiades journals
Citation: Gomoyunov M. I. Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives / M. I. Gomoyunov // Proceedings of the Steklov Institute of Mathematics. — 2021. — Vol. 315. — P. S97-S116.
Abstract: The Cauchy problem is considered for a homogeneous Hamilton–Jacobi equation with fractional-order coinvariant derivatives,which arises in problems of dynamic optimization of systems described by differential equations with Caputo fractional derivatives.A generalized solution of the problem in the minimax sense is defined. It is proved that such a solution exists, is unique, dependscontinuously on the parameters of the problem, and is consistent with the classical solution. An infinitesimal criterion of the minimaxsolution is obtained in the form of a pair of differential inequalities for suitable directional derivatives. An illustrative example is given. © 2021, Pleiades Publishing, Ltd.
Keywords: COINVARIANT DERIVATIVES
FRACTIONAL DERIVATIVES
GENERALIZED SOLUTIONS
HAMILTON–JACOBI EQUATIONS
URI: http://elar.urfu.ru/handle/10995/118411
Access: info:eu-repo/semantics/openAccess
RSCI ID: 48129369
SCOPUS ID: 85123080746
WOS ID: 000745120100009
PURE ID: 29475588
ISSN: 815438
DOI: 10.1134/S0081543821060092
Sponsorship: Russian Science Foundation, RSF: 19-71-00073
This work was supported by the Russian Science Foundation (project no. 19-71-00073).
RSCF project card: 19-71-00073
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85123080746.pdf300,23 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.