Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118322
Название: Analytical solution of integro-differential equations describing the process of intense boiling of a superheated liquid
Авторы: Alexandrova, I. V.
Ivanov, A. A.
Alexandrov, D. V.
Дата публикации: 2022
Издатель: John Wiley and Sons Ltd
Библиографическое описание: Alexandrova I. V. Analytical solution of integro-differential equations describing the process of intense boiling of a superheated liquid / I. V. Alexandrova, A. A. Ivanov, D. V. Alexandrov // Mathematical Methods in the Applied Sciences. — 2022. — Vol. 45. — Iss. 13. — P. 7954-7961.
Аннотация: In this article, an approximate analytical solution of an integro-differential system of equations is constructed, which describes the process of intense boiling of a superheated liquid. The kinetic and balance equations for the bubble-size distribution function and liquid temperature are solved analytically using the Laplace transform and saddle-point methods with allowance for an arbitrary dependence of the bubble growth rate on temperature. The rate of bubble appearance therewith is considered in accordance with the Dering–Volmer and Frenkel–Zeldovich–Kagan nucleation theories. It is shown that the initial distribution function decreases with increasing the dimensionless size of bubbles and shifts to their greater values with time. © 2021 John Wiley & Sons, Ltd.
Ключевые слова: APPLIED MATHEMATICAL MODELING
INTEGRO-DIFFERENTIAL MODEL
INTENSE BOILING
PHASE TRANSITIONS
BUBBLES (IN FLUIDS)
DISTRIBUTION FUNCTIONS
INTEGRODIFFERENTIAL EQUATIONS
LAPLACE TRANSFORMS
APPROXIMATE ANALYTICAL SOLUTIONS
BALANCE EQUATIONS
BUBBLE SIZE DISTRIBUTIONS
INTEGRO-DIFFERENTIAL SYSTEM
LIQUID TEMPERATURE
NUCLEATION THEORY
SADDLEPOINT METHOD
SUPERHEATED LIQUIDS
LIQUIDS
URI: http://elar.urfu.ru/handle/10995/118322
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85107076520
Идентификатор WOS: 000657501200001
Идентификатор PURE: 30719189
ISSN: 1704214
DOI: 10.1002/mma.7560
Сведения о поддержке: Russian Foundation for Basic Research, РФФИ: 20-08-00199; Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0057
This study is divided into two parts, theoretical and numerical. The theoretical part is supported by the Russian Foundation for Basic Research (project no. 20-08-00199). The numerical part was made possible due to the support from the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0057).
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85107076520.pdf995,62 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.