Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118322
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrova, I. V.en
dc.contributor.authorIvanov, A. A.en
dc.contributor.authorAlexandrov, D. V.en
dc.date.accessioned2022-10-19T05:24:41Z-
dc.date.available2022-10-19T05:24:41Z-
dc.date.issued2022-
dc.identifier.citationAlexandrova I. V. Analytical solution of integro-differential equations describing the process of intense boiling of a superheated liquid / I. V. Alexandrova, A. A. Ivanov, D. V. Alexandrov // Mathematical Methods in the Applied Sciences. — 2022. — Vol. 45. — Iss. 13. — P. 7954-7961.en
dc.identifier.issn1704214-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85107076520&doi=10.1002%2fmma.7560&partnerID=40&md5=02b318d107dac9e9e4852f462552c781link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118322-
dc.description.abstractIn this article, an approximate analytical solution of an integro-differential system of equations is constructed, which describes the process of intense boiling of a superheated liquid. The kinetic and balance equations for the bubble-size distribution function and liquid temperature are solved analytically using the Laplace transform and saddle-point methods with allowance for an arbitrary dependence of the bubble growth rate on temperature. The rate of bubble appearance therewith is considered in accordance with the Dering–Volmer and Frenkel–Zeldovich–Kagan nucleation theories. It is shown that the initial distribution function decreases with increasing the dimensionless size of bubbles and shifts to their greater values with time. © 2021 John Wiley & Sons, Ltd.en
dc.description.sponsorshipRussian Foundation for Basic Research, РФФИ: 20-08-00199; Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0057en
dc.description.sponsorshipThis study is divided into two parts, theoretical and numerical. The theoretical part is supported by the Russian Foundation for Basic Research (project no. 20-08-00199). The numerical part was made possible due to the support from the Ministry of Science and Higher Education of the Russian Federation (project no. FEUZ-2020-0057).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Ltden
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMathematical Methods in the Applied Sciencesen
dc.subjectAPPLIED MATHEMATICAL MODELINGen
dc.subjectINTEGRO-DIFFERENTIAL MODELen
dc.subjectINTENSE BOILINGen
dc.subjectPHASE TRANSITIONSen
dc.subjectBUBBLES (IN FLUIDS)en
dc.subjectDISTRIBUTION FUNCTIONSen
dc.subjectINTEGRODIFFERENTIAL EQUATIONSen
dc.subjectLAPLACE TRANSFORMSen
dc.subjectAPPROXIMATE ANALYTICAL SOLUTIONSen
dc.subjectBALANCE EQUATIONSen
dc.subjectBUBBLE SIZE DISTRIBUTIONSen
dc.subjectINTEGRO-DIFFERENTIAL SYSTEMen
dc.subjectLIQUID TEMPERATUREen
dc.subjectNUCLEATION THEORYen
dc.subjectSADDLEPOINT METHODen
dc.subjectSUPERHEATED LIQUIDSen
dc.subjectLIQUIDSen
dc.titleAnalytical solution of integro-differential equations describing the process of intense boiling of a superheated liquiden
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1002/mma.7560-
dc.identifier.scopus85107076520-
local.contributor.employeeAlexandrova, I.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeIvanov, A.A., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeAlexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, Russian Federationen
local.description.firstpage7954-
local.description.lastpage7961-
local.issue13-
local.volume45-
dc.identifier.wos000657501200001-
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure30719189-
local.identifier.eid2-s2.0-85107076520-
local.fund.rffi20-08-00199-
local.identifier.wosWOS:000657501200001-
local.fund.feuzFEUZ-2020-0057-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85107076520.pdf995,62 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.