Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/118160
Title: The functional characterizations of the Rothberger and Menger properties
Authors: Osipov, A. V.
Issue Date: 2018
Publisher: Elsevier B.V.
Citation: Osipov A. V. The functional characterizations of the Rothberger and Menger properties / A. V. Osipov // Topology and its Applications. — 2018. — Vol. 243. — P. 146-152.
Abstract: For a Tychonoff space X, we denote by Cp(X) the space of all real-valued continuous functions on X with the topology of pointwise convergence. In this paper we continue to study different selectors for sequences of dense sets of Cp(X) started to study in the paper [14]. A set A⊆Cp(X) will be called 1-dense in Cp(X), if for each x∈X and an open set W in R there is f∈A such that f(x)∈W. We give the characterizations of selection principles S1(A,A), Sfin(A,A) and S1(S,A) where • A — the family of 1-dense subsets of Cp(X);• S — the family of sequentially dense subsets of Cp(X), through the selection principles of a space X. In particular, we give the functional characterizations of the Rothberger and Menger properties. © 2018
Keywords: CP THEORY
FUNCTION SPACES
MENGER PROPERTY
ROTHBERGER PROPERTY
S1(A,A)
S1(O,O)
S1(S,A)
SFIN(A,A)
SFIN(O,O)
SCHEEPERS DIAGRAM
SELECTION PRINCIPLES
URI: http://elar.urfu.ru/handle/10995/118160
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85047641595
WOS ID: 000438325800010
PURE ID: 7276491
ISSN: 1668641
DOI: 10.1016/j.topol.2018.05.009
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85047641595.pdf345,57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.