Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/117986
Название: | Abelian Repetition Threshold Revisited |
Авторы: | Petrova, E. A. Shur, A. M. |
Дата публикации: | 2022 |
Издатель: | Springer Science and Business Media Deutschland GmbH |
Библиографическое описание: | Petrova E. A. Abelian Repetition Threshold Revisited / E. A. Petrova, A. M. Shur // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2022. — Vol. 13296 LNCS. — P. 302-319. |
Аннотация: | In combinatorics on words, repetition thresholds are the numbers separating avoidable and unavoidable repetitions of a given type in a given class of words. For example, the meaning of the “classical” repetition threshold RT(k) is “every infinite k-ary word contains an α -power of a nonempty word for some α≥ RT(k) but some infinite k-ary words contain no such α -powers with α> RT(k) ”. It is well known that RT(k)=kk-1 with the exceptions for k= 3, 4. For Abelian repetition threshold ART(k), avoidance of fractional Abelian powers of words is considered. The exact values of ART(k) are unknown; the lower bound ART(2)≥113, ART(3 ) ≥ 2, ART(4)≥95, ART(k)≥k-2k-3 for all k≥ 5 was proved by Samsonov and Shur in 2012 and conjectured to be tight. We present a method of study of Abelian power-free languages using random walks in prefix trees and some experimental results obtained by this method. On the base of these results, we suggest that the lower bounds for ART(k) by Samsonov and Shur are not tight for all k except k= 5. We prove ART(k)>k-2k-3 for k= 6, 7, 8, 9, 10 and state a new conjecture on the Abelian repetition threshold. © 2022, Springer Nature Switzerland AG. |
Ключевые слова: | ABELIAN-POWER-FREE LANGUAGE PREFIX TREE RANDOM WALK REPETITION THRESHOLD FORESTRY ABELIAN POWER ABELIAN-POWER-FREE LANGUAGE COMBINATORICS ON WORDS FREE LANGUAGES LOW BOUND POWER PREFIX TREES RANDOM WALK REPETITION THRESHOLD RANDOM PROCESSES |
URI: | http://elar.urfu.ru/handle/10995/117986 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Конференция/семинар: | 17th International Computer Science Symposium in Russia, CSR 2022 |
Дата конференции/семинара: | 29 June 2022 through 1 July 2022 |
Идентификатор SCOPUS: | 85134154103 |
Идентификатор PURE: | 30624486 |
ISSN: | 3029743 |
ISBN: | 9783031095733 |
DOI: | 10.1007/978-3-031-09574-0_19 |
Сведения о поддержке: | Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0016 E. A. Petrova—Supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2020-0016. A. M. Shur—Supported by Ural Mathematical Center, project 075-02-2022-877. Kulikov A.S.Raskhodnikova S. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85134154103.pdf | 534,28 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.