Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117986
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPetrova, E. A.en
dc.contributor.authorShur, A. M.en
dc.date.accessioned2022-10-19T05:20:58Z-
dc.date.available2022-10-19T05:20:58Z-
dc.date.issued2022-
dc.identifier.citationPetrova E. A. Abelian Repetition Threshold Revisited / E. A. Petrova, A. M. Shur // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2022. — Vol. 13296 LNCS. — P. 302-319.en
dc.identifier.isbn9783031095733-
dc.identifier.issn3029743-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85134154103&doi=10.1007%2f978-3-031-09574-0_19&partnerID=40&md5=15efecccd298243f3d8a86b7f0ba441clink
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117986-
dc.description.abstractIn combinatorics on words, repetition thresholds are the numbers separating avoidable and unavoidable repetitions of a given type in a given class of words. For example, the meaning of the “classical” repetition threshold RT(k) is “every infinite k-ary word contains an α -power of a nonempty word for some α≥ RT(k) but some infinite k-ary words contain no such α -powers with α> RT(k) ”. It is well known that RT(k)=kk-1 with the exceptions for k= 3, 4. For Abelian repetition threshold ART(k), avoidance of fractional Abelian powers of words is considered. The exact values of ART(k) are unknown; the lower bound ART(2)≥113, ART(3 ) ≥ 2, ART(4)≥95, ART(k)≥k-2k-3 for all k≥ 5 was proved by Samsonov and Shur in 2012 and conjectured to be tight. We present a method of study of Abelian power-free languages using random walks in prefix trees and some experimental results obtained by this method. On the base of these results, we suggest that the lower bounds for ART(k) by Samsonov and Shur are not tight for all k except k= 5. We prove ART(k)>k-2k-3 for k= 6, 7, 8, 9, 10 and state a new conjecture on the Abelian repetition threshold. © 2022, Springer Nature Switzerland AG.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0016en
dc.description.sponsorshipE. A. Petrova—Supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-2020-0016. A. M. Shur—Supported by Ural Mathematical Center, project 075-02-2022-877.en
dc.description.sponsorshipKulikov A.S.Raskhodnikova S.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Science and Business Media Deutschland GmbHen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectABELIAN-POWER-FREE LANGUAGEen
dc.subjectPREFIX TREEen
dc.subjectRANDOM WALKen
dc.subjectREPETITION THRESHOLDen
dc.subjectFORESTRYen
dc.subjectABELIAN POWERen
dc.subjectABELIAN-POWER-FREE LANGUAGEen
dc.subjectCOMBINATORICS ON WORDSen
dc.subjectFREE LANGUAGESen
dc.subjectLOW BOUNDen
dc.subjectPOWERen
dc.subjectPREFIX TREESen
dc.subjectRANDOM WALKen
dc.subjectREPETITION THRESHOLDen
dc.subjectRANDOM PROCESSESen
dc.titleAbelian Repetition Threshold Revisiteden
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name17th International Computer Science Symposium in Russia, CSR 2022en
dc.conference.date29 June 2022 through 1 July 2022-
dc.identifier.doi10.1007/978-3-031-09574-0_19-
dc.identifier.scopus85134154103-
local.contributor.employeePetrova, E.A., Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeShur, A.M., Ural Federal University, Ekaterinburg, Russian Federationen
local.description.firstpage302-
local.description.lastpage319-
local.volume13296 LNCS-
local.contributor.departmentUral Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure30624486-
local.identifier.eid2-s2.0-85134154103-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85134154103.pdf534,28 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.