Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117868
Название: Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams
Авторы: Gawrychowski, P.
Merkurev, O.
Shur, A. M.
Uznański, P.
Дата публикации: 2019
Издатель: Springer New York LLC
Библиографическое описание: Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams / P. Gawrychowski, O. Merkurev, A. M. Shur et al. // Algorithmica. — 2019.
Аннотация: We consider computing a longest palindrome in the streaming model, where the symbols arrive one-by-one and we do not have random access to the input. While computing the answer exactly using sublinear space is not possible in such a setting, one can still hope for a good approximation guarantee. Our contribution is twofold. First, we provide lower bounds on the space requirements for randomized approximation algorithms processing inputs of length n. We rule out Las Vegas algorithms, as they cannot achieve sublinear space complexity. For Monte Carlo algorithms, we prove a lower bound of Ω(Mlog min { | Σ| , M}) bits of memory; here M= n/ E for approximating the answer with additive error E, and M= log n/ log (1 + ε) for approximating the answer with multiplicative error (1 + ε). Second, we design four real-time algorithms for this problem. Three of them are Monte Carlo approximation algorithms for additive error, “small” and “big” multiplicative errors, respectively. Each algorithm uses O(M) words of memory. Thus the obtained lower bounds are asymptotically tight up to a logarithmic factor. The fourth algorithm is deterministic and finds a longest palindrome exactly if it is short. This algorithm can be run in parallel with a Monte Carlo algorithm to obtain better results in practice. Overall, both the time and space complexity of finding a longest palindrome in a stream are essentially settled. © 2019, The Author(s).
Ключевые слова: LOWER BOUND
PALINDROME
REAL-TIME ALGORITHM
STREAMING
ACOUSTIC STREAMING
ADDITIVES
ERRORS
LINGUISTICS
MONTE CARLO METHODS
LOWER BOUNDS
MONTE CARLO ALGORITHMS
MONTE-CARLO APPROXIMATIONS
MULTIPLICATIVE ERRORS
PALINDROME
RANDOMIZED APPROXIMATION
REAL TIME ALGORITHMS
TIME AND SPACE COMPLEXITY
APPROXIMATION ALGORITHMS
URI: http://elar.urfu.ru/handle/10995/117868
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85067244127
Идентификатор WOS: 000481768400009
Идентификатор PURE: 10787718
ISSN: 1784617
DOI: 10.1007/s00453-019-00591-8
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85067244127.pdf450,63 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.