Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117868
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGawrychowski, P.en
dc.contributor.authorMerkurev, O.en
dc.contributor.authorShur, A. M.en
dc.contributor.authorUznański, P.en
dc.date.accessioned2022-10-19T05:20:03Z-
dc.date.available2022-10-19T05:20:03Z-
dc.date.issued2019-
dc.identifier.citationTight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams / P. Gawrychowski, O. Merkurev, A. M. Shur et al. // Algorithmica. — 2019.en
dc.identifier.issn1784617-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067244127&doi=10.1007%2fs00453-019-00591-8&partnerID=40&md5=08c55272190498c12327dca98bbffee5link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117868-
dc.description.abstractWe consider computing a longest palindrome in the streaming model, where the symbols arrive one-by-one and we do not have random access to the input. While computing the answer exactly using sublinear space is not possible in such a setting, one can still hope for a good approximation guarantee. Our contribution is twofold. First, we provide lower bounds on the space requirements for randomized approximation algorithms processing inputs of length n. We rule out Las Vegas algorithms, as they cannot achieve sublinear space complexity. For Monte Carlo algorithms, we prove a lower bound of Ω(Mlog min { | Σ| , M}) bits of memory; here M= n/ E for approximating the answer with additive error E, and M= log n/ log (1 + ε) for approximating the answer with multiplicative error (1 + ε). Second, we design four real-time algorithms for this problem. Three of them are Monte Carlo approximation algorithms for additive error, “small” and “big” multiplicative errors, respectively. Each algorithm uses O(M) words of memory. Thus the obtained lower bounds are asymptotically tight up to a logarithmic factor. The fourth algorithm is deterministic and finds a longest palindrome exactly if it is short. This algorithm can be run in parallel with a Monte Carlo algorithm to obtain better results in practice. Overall, both the time and space complexity of finding a longest palindrome in a stream are essentially settled. © 2019, The Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer New York LLCen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAlgorithmicaen
dc.subjectLOWER BOUNDen
dc.subjectPALINDROMEen
dc.subjectREAL-TIME ALGORITHMen
dc.subjectSTREAMINGen
dc.subjectACOUSTIC STREAMINGen
dc.subjectADDITIVESen
dc.subjectERRORSen
dc.subjectLINGUISTICSen
dc.subjectMONTE CARLO METHODSen
dc.subjectLOWER BOUNDSen
dc.subjectMONTE CARLO ALGORITHMSen
dc.subjectMONTE-CARLO APPROXIMATIONSen
dc.subjectMULTIPLICATIVE ERRORSen
dc.subjectPALINDROMEen
dc.subjectRANDOMIZED APPROXIMATIONen
dc.subjectREAL TIME ALGORITHMSen
dc.subjectTIME AND SPACE COMPLEXITYen
dc.subjectAPPROXIMATION ALGORITHMSen
dc.titleTight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streamsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s00453-019-00591-8-
dc.identifier.scopus85067244127-
local.contributor.employeeGawrychowski, P., Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, Wrocław, 50-383, Polanden
local.contributor.employeeMerkurev, O., Department of Algebra and Fundamental Informatics, Ural Federal University, pr. Lenina 51, Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeShur, A.M., Department of Algebra and Fundamental Informatics, Ural Federal University, pr. Lenina 51, Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeUznański, P., Department of Computer Science, ETH Zürich, Universitätstrasse 6, Zürich, 8092, Switzerlanden
dc.identifier.wos000481768400009-
local.contributor.departmentInstitute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, Wrocław, 50-383, Polanden
local.contributor.departmentDepartment of Algebra and Fundamental Informatics, Ural Federal University, pr. Lenina 51, Yekaterinburg, 620000, Russian Federationen
local.contributor.departmentDepartment of Computer Science, ETH Zürich, Universitätstrasse 6, Zürich, 8092, Switzerlanden
local.identifier.pure10787718-
local.identifier.eid2-s2.0-85067244127-
local.identifier.wosWOS:000481768400009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85067244127.pdf450,63 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.