Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/117791
Title: Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers
Authors: Anikin, A. Y.
Dobrokhotov, S. Y.
Katsnelson, M. I.
Issue Date: 2016
Publisher: Maik Nauka Publishing / Springer SBM
Citation: Anikin A. Y. Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers / A. Y. Anikin, S. Y. Dobrokhotov, M. I. Katsnelson // Theoretical and Mathematical Physics(Russian Federation). — 2016. — Vol. 188. — Iss. 2. — P. 1210-1235.
Abstract: We study the semiclassical asymptotic approximation of the spectrum of the two-dimensional Schrödinger operator with a potential periodic in x and increasing at infinity in y. We show that the lower part of the spectrum has a band structure (where bands can overlap) and calculate their widths and dispersion relations between energy and quasimomenta. The key role in the obtained asymptotic approximation is played by librations, i.e., unstable periodic trajectories of the Hamiltonian system with an inverted potential. We also present an effective numerical algorithm for computing the widths of bands and discuss applications to quantum dimers. © 2016, Pleiades Publishing, Ltd.
Keywords: DISPERSION RELATION
PERIODIC SCHRÖDINGER OPERATOR
SPECTRAL BAND
SPECTRUM
TUNNELING EFFECT
URI: http://elar.urfu.ru/handle/10995/117791
Access: info:eu-repo/semantics/openAccess
RSCI ID: 27571659
SCOPUS ID: 84986239340
WOS ID: 000382875800006
PURE ID: 1094805
ISSN: 405779
DOI: 10.1134/S0040577916080067
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84986239340.pdf759,65 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.