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LOWER PART OF THE SPECTRUM FOR THE TWO-DIMENSIONAL

SCHRÖDINGER OPERATOR PERIODIC IN ONE VARIABLE AND

APPLICATION TO QUANTUM DIMERS

A. Yu. Anikin,∗† S. Yu. Dobrokhotov,∗ and M. I. Katsnelson‡

We study the semiclassical asymptotic approximation of the spectrum of the two-dimensional Schrödinger

operator with a potential periodic in x and increasing at infinity in y. We show that the lower part of

the spectrum has a band structure (where bands can overlap) and calculate their widths and dispersion

relations between energy and quasimomenta. The key role in the obtained asymptotic approximation

is played by librations, i.e., unstable periodic trajectories of the Hamiltonian system with an inverted

potential. We also present an effective numerical algorithm for computing the widths of bands and discuss

applications to quantum dimers.

Keywords: periodic Schrödinger operator, spectrum, tunneling effect, spectral band, dispersion relation

DOI: 10.1134/S0040577916080067

1. Introduction

This paper is devoted to studying the spectrum of a Schrödinger operator

̂H = −h2

2

(

∂2

∂x2
+

∂2

∂y2

)

+
y2

2
− α cosβx cos(y − y0) (1)

in the semiclassical approximation h → +0. Here, α, β > 0 and y0 (mod 2π) are parameters. Operator (1)
serves as a simplified model for investigating quantum effects that appear in the one-dimensional motion
of a two-atom molecule over the surface of a solid [1]. For brevity, we call this system a quantum dimer in
what follows.

On the other hand, operator (1) provides an example of a quite simple two-dimensional quantum
system whose potential is periodic in one variable and increases at infinity in the other. Such systems
are insufficiently studied in the mathematical literature in contrast to systems with potentials periodic on
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a lattice (see [2]). The variables in the corresponding spectral problem do not separate, which makes the
problem nontrivial, but asymptotic methods allow effectively calculating some of its spectral characteristics.

Our goal here is to study the lower part of the spectrum of ̂H . Namely, we are interested in energies that
lie near the minimum of the potential and correspond to Bloch functions in x, i.e., such that ψ(x+2π/β, y) =
e2πiqψ(x, y). The real parameter q (mod 1) is called the quasimomentum.

Operator (1) is related to quantum dimers as follows. The operator describing a quantum dimer moving
on a periodic one-dimensional substrate has the form [1]

̂H = − �
2

2m

(

∂2

∂x2
1

+
∂2

∂x2
2

)

+
K2

2
(x2 − x1 − l)2 + U0(2 − cos kx1 − cos kx2),

where m is the mass, K2 is the rigidity, U0 is the depth of the potential relief, 2π/k is the period of
the substrate potential, and l is the equilibrium distance between atoms in the molecule. Using the new
coordinates x = k(x1 + x2)/2 and y = k(x2 − x1 − l)/2 and the new parameters α = U0k

2/2K2, h2 =
k4

�
2/8mK2, and y0 = −kl/2 yields ̂H = (K2/k2) ̂H + 2U0, where ̂H has form (1) with β = 1.
Changing the quantum momenta (operators) −ih ∂/∂x and −ih ∂/∂y to the classical momenta px and

py, we obtain the classical Hamiltonian corresponding to (1):

H =
1
2
(p2

x + p2
y) + U(x, y), U =

y2

2
− α cosβx cos(y − y0), (2)

where the cylinder

Z =
{

x

(

mod
2π

β

)

, y ∈ R

}

serves as the configuration space.
We stress that this Hamiltonian system is not integrable. Moreover, there are domains in the phase

space where the behavior of its trajectories is chaotic (see [1]). Because of the well-known correspondence
between classical and quantum systems, a large part of the spectrum of ̂H apparently has a rather com-
plicated and irregular structure. Nevertheless, the lower part of the spectrum—the ground and weakly
excited states—is very regular and consists of bands and gaps, which can be described using rather explicit
asymptotic formulas with respect to the small parameter h.

The potential U near a global minimum point (x̃, ỹ) can be approximated by the harmonic oscillator
potential. This allows constructing the discrete set of points

Emn = Umin + ω1h

(

1
2

+ m

)

+ ω2h

(

1
2

+ n

)

+ O(h2), m, n ∈ Z+, (3)

where Umin = U(x̃, ỹ), and ω1 and ω2 are the small oscillations frequencies, i.e., the square roots of the
eigenvalues of the second derivative matrix d2U(x̃, ỹ).

Because of the periodic properties of the potential, the spectrum of operator (1) is continuous, and
points (3) specify the positions of spectral bands. The widths of these bands are exponentially small as
h → 0, and the harmonic oscillator approximation cannot describe them: tunnel effects should be taken
into account. The points where the global minimum of U is attained depend on the parameters α, β, and
y0. Hence, the spectral band structure of operator (1) also depends on these parameters.

Proposition 1. The global minimum of the function U(x, y) on the cylinder Z is attained at either

one or two points. Namely, we have two cases.

Case 1. If |y0| < π/2, then there is a unique global minimum point x = 0, y = y∗, where y∗ is the

solution of the equation y+α sin(y−y0) = 0 closest to zero. If π/2 < |y0| ≤ π, then there is a unique global
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Fig. 1. The points of the global minimum for U : the horizontal axis is the x axis and the vertical

axis is the y axis.

minimum point x = π/β, y = y∗, where y∗ is the solution of the equation y − α sin(y − y0) = 0 closest to

zero.

Case 2. If y0 = π/2 or y0 = −π/2), then there are two global minimum points (0, y∗) and (π/β,−y∗),
where y∗ is the solution of the respective equation y − α cos y = 0 or y + α cos y = 0 closest to zero.

We present the proof of Proposition 1 in Appendix A.

Remark 1. Obviously, Case 1 is generic. In both cases, the potential has an axial symmetry:

U(−x, y) = U(x, y).

In Case 2, there is an additional central symmetry U(π−x,−y) = U(x, y). We also note the special Case 0,
where y0 = 0 or y0 = π.

Proposition 1 is illustrated in Fig. 1 (for β = 1).
It turns out that the structure of the lower part of the spectrum is as follows. In Case 1, a spectral

band consisting of energies E corresponding to Bloch functions in the x variable is associated with each
quantum vector (m, n) ∈ Z

2
+. Moreover, each quasimomentum q corresponds to a unique energy E, and the

function E = Emn(q), called the dispersion relation, is hence well defined. In Case 2, two analogous bands
are associated with each quantum vector. This fact can be simply explained by considering an example
with separated variables:

˜U = α(1 − cosx) + V (y). (4)

In Sec. 2.2, we study two cases: V = y2/2 (Case A) and V = (y2 − a2)2/2 (Case B), which are similar
to the respective Cases 1 and 2. We easily see that each quantum vector is associated with one band in
Case A and with two bands in Case B.

The problem of calculating the widths of bands and dispersion relations is by no means trivial, and
we here present two approaches for solving it. The mathematically rigorous approach reduces the question
to a problem with a potential having a few wells on the cylinder, to which the Helffer–Sjöstrand theory
is already applicable (see [3]). This approach works in the case with rational quasimomenta q. The other
approach [4], which is a multidimensional generalization of the method described in [5], [6], allows deriving
correct formulas on the physical level of rigor (we call it the Herring method or approach in what follows).
At the same time, the latter approach seems useful in view of its simplicity. We use it for a “hand-waving”
explanation of the form of the dispersion relation in Case 1.
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We note that the considered periodic problem is close to the spectrum-splitting problem for a poten-
tial with two symmetric wells studied in detail in [3], [7]–[11]. In both cases, studying the semiclassical
exponentially small (or tunnel) effects leads to the Hamiltonian system H = (p2

x + p2
y)/2−U(x, y) with an

“inverted” potential. An important role is played by special trajectories of this Hamiltonian system, called
instantons and librations. In the one-dimensional case, an instanton is a separatrix or doubly asymptotic
motion corresponding to a minimum of the potential U(x, y), and a libration is a periodic trajectory close
to an instanton. Analogous objects arise in the multidimensional—in particular, two-dimensional—case,
but their existence is already not so obvious (see Sec. 3 below).

The asymptotic formula for splitting of the ground-state eigenvalues in the symmetric double-well
problem can be written in two forms: “in terms of an instanton” [8], [9] or “in terms of a libration” [10], [11].
The mechanical action along the corresponding instanton or libration is written in the exponent. The
preexponential factor is expressed in terms of the motions transverse to the instanton or libration. It is
important that although the two formulas are equivalent (passing from one to the other is a problem in
classical mechanics), the form of the preexponential factor in the expression “in terms of an instanton” is
significantly worse. It invokes a scattering problem for the variational equation, a boundary value problem
with conditions at infinity. Using such a formula in practice leads to cumbersome computations. In the
case of very large dimensions, this method is generally inapplicable because of the so-called determinant
problem (see [12]). In view of its bulkiness (especially in the multidimensional case), the splitting formula
“in terms of an instanton” is not written here (it can be found in [8]).

On the other hand, the splitting formula “in terms of a libration” [10], [11] is significantly simpler:

ΔE = b
ωh

π
e−S/h(1 + O(h)).

Here, S is the action along a certain libration called a tunnel libration, ω is one of the harmonic oscillator
frequencies, and b is a universal constant (independent of the potential). (A more precise formulation is
given below.) In the one-dimensional case, the tunnel libration is just a libration corresponding to the
energy of a given state. In the multidimensional case, this is no longer true, and the tunnel libration is
found from an implicit equation, which involves an invariant object, the Floquet exponent of a libration.
This formula is simple and esthetic, which from the physical standpoint reflects the fact that zero energy has
no meaning in quantum mechanics, in contrast to the ground state energy. We also note that the similarity
of this formula to the Landau–Lifshitz formula for highly excited states in a one-dimensional problem (see
Problem 3 in Sect. VII.50 in [5]).

Here, we show how to write the asymptotic approximation “in terms of a libration” for the band widths
and dispersion relations in the two-dimensional periodic problem. We also propose an effective numerical
algorithm for practical implementation of these asymptotic approximations. Similar calculations in the
double-well case were presented in [13].

This paper has the following structure. In Sec. 2, we recall well-known facts about the structure of the
lower part of the spectrum of the one-dimensional Schrödinger operator and rewrite the dispersion relations
for lower spectral bands “in terms of a libration.” We then study the spectral structure and dispersion
relations for Cases A and B. In Sec. 3, we describe instantons and librations in the two-dimensional periodic
problem.

The main results are presented in Sec. 4: Theorems 3, 4, and 5 describe dispersion relations (in
particular, band widths) in Cases 1 and 2.

Section 5 is devoted to computing band widths numerically. In Sec. 6, we show how to derive dispersion
relations in Case 1 using the Herring approach. In Sec. 7, we explain the Helffer–Sjöstrand interaction matrix
method. In Sec. 8, we prove the theorems from Sec. 4 and also derive the dispersion relations “in terms
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of a libration” for the lowest band in the one-dimensional case (Theorem 1) without requiring the mirror
symmetry x → −x.

2. Examples with separating variables

In this section, we study the spectral bands and dispersion relations in Cases A and B. To begin, we
recall the spectral structure for the one-dimensional periodic problem.

2.1. The one-dimensional Sturm–Liouville problem. We consider the one-dimensional periodic
spectral problem (Mathieu equation)

̂H1Φ = EΦ, ̂H1 = −h2

2
∂2

∂x2
+ v(x), v(x) =

ω2
1

2
(1 − cosx). (5)

The spectrum of ̂H1 consists of those values E corresponding to nontrivial solutions Φ bounded in R. It
is known that the spectrum is positive and consists of bands [E−

m, E+
m], m = 0, 1, . . . , separated by gaps

(E+
m, E−

m+1) (see [2]). The eigenspace corresponding to each E ∈ [E−
m, E+

m] is spanned by Bloch solutions
Φm(x, q), i.e., solutions with the property

Φm(x + 2π, q) = e2πiqΦm(x, q), (6)

where q ∈ [0, 1) is called a quasimomentum. If q = 0 or q = 1/2, then the eigenspace is one-dimensional
and spanned by a real-valued periodic function Φm(x, 0) or antiperiodic function Φm(x, 1/2). For any other
q, the space is two-dimensional and spanned by Φm(x, q) and Φm(x, 1 − q) ≡ Φm(x, q).

All these properties hold without the assumption that the parameter h is small. We now study
spectral bands as h → 0 in detail. For a rough description of the bands and eigenfunctions, we can use the
harmonic oscillator approximation near the point xk = 2πk. The mth band is then located near the energy
Em(q) = hω1(1/2 + m) + O(h2).

We construct functions wm(x) = Hm(ω1x/
√

h)e−ω1x2/2h and also wk
m(x) = Cmwm(x−xk), where Hm

are Hermite polynomials and Cm are normalizing constants. Each function wk
m is localized in a neighborhood

of the point xk. A rough approximation of the Bloch functions is given by

˜Φm(x, q) =
∞
∑

k=−∞
wk

m(x)e2πikq . (7)

Each function ˜Φm(x, q) is thus localized in neighborhoods of the points xk and defines the so-called power-
law asymptotic approximation in h: the equality ( ̂H1 − E)˜Φm(x, q) = O(h3/2) holds.

Such an asymptotic approximation does not allow finding the exponentially small band width nor the
dependence Em(q). We should use a more precise WKB-type asymptotic approximation instead, where the
functions wm are replaced with

wm(x) = Am(x, h)e−θ(x)/h, θ(x) =
∣

∣

∣

∣

∫ xk+x

xk

√

2v(z)dz

∣

∣

∣

∣

. (8)

Therefore, θ(x) is in fact the value of the Maupertuis–Jacobi action calculated along the instanton (see
Fig. 2). The amplitude Am(x, h) is a smooth function found from the transport equation and is close to
Hm(ω1(x−xk)/

√
h) near xk. We note that sum (7) is the known representation of Bloch functions in terms

of Wannier functions and equality (8) determines the asymptotic approximation of the Wannier function.
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Fig. 2. (above) Graph of the inverted potential −v(x) and (below) the phase portrait, i.e., level

lines of the function p2/2 − v(x) = E: the energy E = 0 corresponds to the instanton, and E = −Em

corresponds to the libration. The function θ(x) is the area under the graph of the instanton, and

Sm(h) is half the area of the domain surrounded by the libration E = Em.

It turns out that if the leading term of the function Am(x, h) and also the function θ(x) in asymptotic
approximation (8) are known on the segment [−π, π], then the band width and dispersion relations can be
easily found. We discuss the calculations in more detail below and here only formulate the final result.

Let Sm(h) be the Maupertuis–Jacobi action along the libration with the total energy E = −Em (see
Fig. 2), i.e.,

Sm(h) =
∫ x+(h,m)

x−(h,m)

√

2v(x) − hω1(2m + 1)dx, (9)

where x±(h, m) are points in the interval xk < x−(h, m) < x+(h, m) < xk+1 where the integrand in (9)
vanishes.

Theorem 1. The asymptotic formula

Em(q) − Em(0) = (−1)mbm
ω1h

π
e−Sm(h)/h(1 − cos 2πq)(1 + o(1)) (10)

holds for the spectrum of operator (5), where bm are constants independent of the potential (see (17) below).

The dispersion relation curves on the plane (E, q) are shown in Fig. 3.

Remark 2. Formula (10) resembles the Landau–Lifshitz asymptotic formula for the widths of highly
excited bands in a one-dimensional periodic problem (see Problem 3 in Sec. VI.55 in [6]). The dispersion
relations for the lower bands “in terms of an instanton” are well known [14].

Remark 3. We derive formula (10) using the Herring method in Sec. 6 and present a rigorous proof
by the Helffer–Sjöstrand method in Sec. 8. We also note that an advantage of the second approach is that
it also works without requiring the symmetry x → −x.

2.2. Cases A and B. Case A. It is easy to see that the spectrum of the operator ̂H can be represented
in the form E = Emn(q) = Em(q) + ˜En, where ˜En = hω2(n + 1/2) and Em(q) is the band spectrum of the
one-dimensional periodic Sturm–Liouville operator. Here, m = 0, 1, . . . is the band number and q (mod 1)
is a quasimomentum. The eigenfunctions Φ of ̂H are the products Φm(x, q)˜Φn(y) of the eigenfunctions
˜Φn(y) for the harmonic oscillator and the Bloch function Φm(x, q) (see the spectral structure in Fig. 4a).

Hence, the spectrum consists of bands. Under the additional nonresonance condition (i.e., ω1 and ω2

are rationally independent), the bands do not overlap for sufficiently small h.
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Fig. 3. Dispersion relations—quasimomenta and energy: the endpoints of bands correspond to

periodic or antiperiodic Bloch functions.

a b

Fig. 4. The spectra in (a) Case A and (b) Case B: the spectral bands of the periodic operator are

shown on the horizontal axis. The discrete spectrum of the harmonic oscillator in Case A and of the

double-well potential V (y) in Case B is shown on the vertical axis. In both cases, the segments are

obtained by summing the eigenvalues on the axes. The spectrum of the two-dimensional operator is

obtained by projecting these segments on the horizontal axis.

Case B. Let V (y) be a symmetric double-well potential. The corresponding one-dimensional Schröding-
er operator was studied in many works (see [3], [14]–[16]). Its spectrum is discrete, and eigenvalues near
the potential minimums divide into asymptotically coinciding pairs ˜E±

n as h → 0. The leading term of their
asymptotic expansion is determined by the harmonic oscillator approximation, and the difference between
these values (splitting) is exponentially small:

˜E±
n = ω2h

(

n +
1
2

)

+ O(h2), ˜E+
n − ˜E−

n = ˜Qn(1 + o(1)), h → 0.

Remark 4. The leading term ˜Qn has a form similar to the right-hand side of (10) mutatis mutandis
(see [15], [3]).

Hence, the spectrum in Case B has the form E = Enm(q) = ˜E±
n + Em(q). As in Case A, it consists

of bands, which can now overlap (if the gap ˜E+
n − ˜E−

n is sufficiently small compared with the band width
Em(1/2)− Em(0)) (see the spectral structure in Fig. 4b).
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As noted above, the spectral structure in Case 1 is close to Case A, and Case 2 resembles Case B. But
we indicate one essential difference between Cases B and 2. Because of the richer symmetry in Case 2, there
is an exact spectral degeneracy for some energy values. Namely, it turns out that the endpoints of bands
corresponding to q = 1/2 coincide (exactly). This effect, generally speaking, does not occur in Case B,
where we can find only conditions for “asymptotic,” not exact, degeneracy.

3. Instantons and librations in two dimensions

Everywhere in this section, we work with the following classical system, which we naturally call the
tunnel system. This is a Lagrangian system L = T + U with the inverted potential V = −U and the
standard kinetic energy T = (ẋ2 + ẏ2)/2. The configuration space Z is a cylinder x (mod 2π/β), y ∈ R.
The system is equivalent to the Newtonian system ẍ = ∂U/∂x, ÿ = ∂U/∂y.

We fix a certain value of the energy E. Let VE denote the domain of classically allowed motions with
the energy E, i.e., VE = {x ∈ Z : V (x) ≤ E}. In what follows, we are interested in special trajectories
of the tunnel system reaching the boundary ∂VE : (1) librations, i.e., periodic trajectories with the energy
E reaching ∂VE twice in a period and (2) instantons, i.e., doubly asymptotic (homoclinic or heteroclinic)
trajectories connecting two unstable equilibriums associated with the maximum of V . (We recall that a
solution is said to be homoclinic if it tends to a single point as t → ±∞ and heteroclinic if it goes to two
different points.)

At first glance, the question of the existence of instantons and librations resembles the known problem
of closed geodesics on a Riemannian manifold. The question of the existence of such geodesics is resolved
in the framework of Morse theory (see [17]), but those results are not directly applicable to the problem
of finding librations (and also instantons), because librations reach the boundary of VE , where the metric
degenerates.

Theorem 2 [18], [19]. Let M be compact and VE not contain equilibriums. Let VE/∂VE be a

quotient topological space (i.e., obtained from VE by contracting ∂VE to a point). Then the number of

distinct librations is not less than the number of generators of the fundamental group π(VE/∂VE).

Remark 5. The compactness assumption is formally violated in our case. Nevertheless, this difficulty
can be easily overcome by perturbing the potential for large y and then compactifying the cylinder Z.

Remark 6. The existence of homoclinic and heteroclinic trajectories can be proved along the same
lines. The difference is in the local analysis near the minimums of V (see [18], [19]).

We recall that the Maupertuis–Jacobi action along a trajectory γ of a Lagrangian system L = T + U

with the energy −E is defined as

d =
∫

γ

√

2(U(x) − E) ds.

Here, ds2 = dx2 +dy2 is the standard Euclidean metric. Below, the action is always the Maupertuis–Jacobi
action. The metric

√

2(U(x) − E) ds is called the Jacobi matric (or the Agmon metric in a semiclassical
context).

The librations and instantons in Theorem 2 are the shortest paths between the corresponding connected
components of ∂VE in the Jacobi metric.

We return to the classical tunnel system. In Case 0, there is a unique well z1, the system has an
invariant plane y = ẏ = 0, and the instanton and librations are therefore solutions of the one-dimensional
problem. In this simple case, we do not need Theorem 2. Clearly, the librations and the instanton project
on the same line y = 0 in the configuration (physical) space (see Fig. 5a)).
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a b c d

Fig. 5. Instantons in (a) Cases 0, (b) Case 1, and (c) Case 2: the horizontal axis is the x axis and

the vertical axis is the y axis. The solid vertical lines are x = 2πn/β. The dashed vertical lines are

the symmetry axes x = (2n + 1)π/β, and the dashed horizontal lines are y = ±y∗. (d) The instanton

(bold) and the libration (thin): the dashed lines are two components of the potential energy level.

In Case 1, there is also a unique well z1 on the cylinder Z. But things become more difficult compared
with Case 0, and instantons and librations cannot be found analytically. The group π(VE/∂VE) is isomorphic
to Z with a noncontractible closed cycle on the cylinder as generator. According to Theorem 2, this cycle
determines an instanton (a homoclinic trajectory to z1; see Fig. 5b)) and a family of librations encircling
the cylinder.

The instantons and librations have the symmetry x → −x. Consequently, they cross the symmetry
line at a right angle. We also note that librations and instantons generally do not project on the same curve
in the configuration space (see Fig. 5d)).

In Case 2, in addition to the axial symmetry x → −x, the potential also has the central symmetry
y → −y, x → π/β − x. As follows from Proposition 1, the potential has two wells z1 and z2, and the space
VE/∂VE is homotopy equivalent to a cylinder with a handle (connecting z1 and z2). Then π(VE/∂VE) is the
free group with two generators. According to Theorem 2, there exists a heteroclinic instanton, connecting
z1 and z2. Because of the axial symmetry, we immediately obtain another instanton (they are shown by
solid lines in Fig. 5c)). They correspond to two independent cycles on VE/∂VE. The existence of other
instantons generally cannot be guaranteed. Nevertheless, a noncontractible instanton homoclinic to z1 can
exist under the condition that the wells z1 and z2 are located sufficiently far apart. (More precisely, the
distance between them in the Jacobi metric should be greater than the distance between the two nearest
preimages of z1 on the covering space R

2.) This can happen when β is large. A numerical analysis indicates
that there is no homoclinic instanton for β = 1 (the interesting case for application to dimers). The
homoclinic instantons are shown by dashed lines in Fig. 5c.

Hence, heteroclinic instantons have the central symmetry (in particular, they cross the x axis at
x = ±π(2n + 1)/2β), and homoclinic instantons have the axial symmetry. Moreover, the axial symmetry
converts a heteroclinic instanton into another heteroclinic instanton, and the central symmetry converts a
homoclinic instanton into another homoclinic instanton.

4. Main results

We study the spectral bands of operator (1). For convenience, we pass from the potential U to U−Umin

with the global minimum is U = 0. This new potential is also denoted by U . We recall that the harmonic
oscillations frequencies are denoted by ω1,2; they can be easily calculated:

ω1 =
√

βr, ω2 =
√

1 + r, where r = α| cos(y∗ − y0)|.

(Hence, ω1 corresponds to the x axis and ω2 corresponds to the y axis.) Let ω− denote the least frequency
and ω+ denote the greatest frequency.
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In what follows, we assume that the following nondegeneracy conditions are satisfied:

1. The frequencies ω1 and ω2 are rationally independent.

2. We have ω+ > 2ω−.

3. There is a unique instanton on the cylinder Z in Case 1 and at most two homoclinic and two hetero-
clinic instantons on Z in Case 2.

4. Each instanton approaches each equilibrium zk in a nonsingular direction, i.e., the direction of the
axis corresponding to ω−.

5. The asymptotic manifolds of the unstable equilibriums zk intersect transversely along each instanton.

We discuss sufficient conditions for some of these conditions to be satisfied in the physically interesting
case β = 1.

Proposition 2. Let β = 1, r ≤ 1/3, and r �= q2
1/(q2

1 − q2
2) for q1, q2 ∈ Z. Then ω− = ω1, and

conditions 1, 2, and 4 are satisfied.

Proof. Conditions 1 and 2 can be easily verified. To prove that condition 4 is satisfied, we note
that only two asymptotic solutions approach the unstable equilibrium in the singular direction, which
corresponds to ω2 according to the assumptions. (Indeed, the equilibrium has a node singularity on the
two-dimensional stable asymptotic manifold.) From the tunnel system equations, we can see that the x

coordinate is constant along those asymptotic solutions. Hence, those solution are not instantons. �

Remark 7. Condition 2 is technical and can apparently be dropped. If so, then the assumption
r ≤ 1/3 is also inessential.

Remark 8. Conditions 3 and 5 are generically satisfied, but checking them in a concrete situation is
nontrivial. We do not discuss this problem here.

We introduce some important constructions, which are needed for describing the spectrum.
According to condition 3, the tunnel system L = T + U has an instanton γ with zero total energy,

E = T − U = 0. There is a family of librations γε with energies T − U = −ε < 0 in a vicinity of this
instanton. Let λ(ε) > 0 be a nontrivial Floquet exponent of a corresponding libration. It is easy to see that
the equation

ε +
h

2
λ(ε) =

h

2
(ω−(2m + 1) + ω+) (11)

has a unique solution ε = εm(h) for each m = 0, 1, 2, . . . and sufficiently small h and ε. This determines a
sequence of energies ε = εm(h) or a sequence of librations γεm(h). We call them tunnel librations.

Remark 9. It is clear that librations in the one-dimensional case are just periodic orbits with energies
of lower quantum states taken with the minus sign.

We note that the problem of seeking the Bloch functions with q = 0 (i.e., 2π/β-periodic in x) is
equivalent to the problem of seeking the eigenfunctions of the Schrödinger operator on the cylinder Z.
Further, to seek the Bloch functions with q = 1/2 (i.e., 2π/β-antiperiodic in x), we can study the operator
on the “twofold cylinder”: Z(2) = {x (mod 4π/β), y ∈ R}. Its eigenfunctions correspond not only to
antiperiodic but also to periodic Bloch functions. More generally, the study of Bloch functions with rational
quasimomenta leads to the operator on the “N -fold cylinder”: Z(N) = {x (mod 2Nπ/β), y ∈ R}. In what
follows, all mathematically rigorous theorems about the spectrum are stated only for the case of rational
quasimomenta.
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Theorem 3. We suppose that conditions 1–5 are satisfied and that we have Case 1. Then the set

of points E ∈ [0, Ch] such that there is a rational q ∈ [0, 1) and a function ψ ∈ L2(Z(N)) satisfying the

property

̂Hψ = Eψ, ψ

(

x +
2π

β
, y

)

= e2πiqψ(x, y), (12)

consists of elements E = Eν(q), where ν = (ν−, ν+) ∈ Z
2
+ such that the asymptotic approximation

Eν(q) = ω−

(

ν− +
1
2

)

h + ω+

(

ν+ +
1
2

)

h + O(h2) (13)

holds. Furthermore,

a. one and only one function (up to a constant factor) that satisfies (12) for a given q corresponds to

each E = Eν(q),

b. Eν(q) = Eν(1 − q),

c. the dispersion relations

Eν(q) − Eν(0) = 2A(h)(cos 2πq − 1)(1 + o(1)) (14)

hold,

d. there are constants κk = κk(ν) and C1, C2 > 0 such that

C1h
κ1e−d0/h ≤ |A(h)| ≤ C2h

κ2e−d0/h, (15)

where d0 is the action along the instanton (unique up to the symmetry), and

e. if ν+ = 0, then

|A(h)| = bν−

ω−h

π
e−S(εν−(h))/h(1 + o(1)), h → 0, (16)

where S(εm(h)) is the action along half the period of the tunnel libration γεm(h) and

bm =
2−m

√
π(2m + 1)(2m+1)/2

m!em+1/2
. (17)

Comment 1. Therefore, the spectrum in Case 1 has a band structure: each quantum vector ν ∈ Z
2
+

is associated with a band located according to harmonic oscillator approximation (13). The dispersion
relations are (14). The band width has upper and lower bounds (15) written in terms of the instanton action.
For special quantum vectors, namely, such that ν+ = 0, the band width has an asymptotic approximation
written in terms of the action along tunnel libration (16).

We proceed to Case 2. Let dhet be the action along the heteroclinic instanton and dhom be the action
along the homoclinic instanton. If the latter does not exist, then we formally set dhom = ∞. Below, we
consider two general situations: dhet < dhom and dhom < dhet.

Theorem 4. We suppose that conditions 1–5 are satisfied and that we have Case 2. Moreover, let

dhet < dhom (including the case dhom = ∞). Then the set of points E ∈ [0, Ch] such that there is a

rational q ∈ [0, 1) and a function ψ ∈ L2(Z(N)) satisfying property (12) consists of elements E = E+
ν (q)

and E = E−
ν (q), where ν = (ν−, ν+) ∈ Z

2
+ such that asymptotic approximation (13) holds. Furthermore,
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a.1. if q �= 1/2, then one and only one function (up to a constant factor) that satisfies (12) for a given q

corresponds to each E = E±
ν (q),

a.2. E+
ν (1/2) = E−

ν (1/2), this value is associated with a two-dimensional space of functions satisfying (12)
for q = 1/2,

b. Eν(q) = Eν(1 − q),

c. the dispersion relations

E±
ν (q) − E±

ν

(

1
2

)

= ±A(h)(1 + cos 2πq)(1 + o(1)), h → 0, (18)

hold,

d. estimates (15) are applicable, where d0 = dhet,

e. if ν+ = 0, then asymptotic approximation (16) holds, and librations are chosen near the heteroclinic

instanton.

Comment 2. Therefore, in Case 2 for dhet < dhom, each quantum vector ν ∈ Z
2
+ is associated with a

pair of bands I±ν =
⋃

q∈[0,1) E±
ν (q) located, as before, according to the harmonic oscillator approximation.

These bands are adjacent at their endpoints corresponding to q = 1/2, where there is an exact degeneracy.
The dispersion relations and both band widths are found by formulas similar to those in Case 1. The
dispersion relations presented in Theorem 4 define curves on the plane (E, q) shown in Fig. 6a.

Theorem 5. We suppose that conditions 1–5 are satisfied and that we have Case 2. Moreover, let

dhom < dhet. Then the set of points E ∈ [0, Ch] such that there is a rational q ∈ [0, 1) and a function ψ ∈
L2(Z(N)) satisfying property (12) consists of elements E = E+

ν (q) and E = E−
ν (q), where ν = (ν−, ν+) ∈ Z

2
+,

such that asymptotic approximation (13) holds. Furthermore,

a.1. if q �= 1/2, then there is at most a two-dimensional space of functions that satisfy (12) for a given q

and E = E±
ν (q) corresponds to each pair (ν, q),

a.2. E+
ν (1/2) = E−

ν (1/2), which value is associated with a two-dimensional space of functions satisfy-

ing (12) for q = 1/2,

b. Eν(q) = Eν(1 − q),

c. the dispersion relations

E±
ν (q) − E±

ν

(

1
2

)

= 2A(h)(1 + cos 2πq)(1 + o(1)), h → 0, (19)

hold,

d. estimates (15) are applicable, where d0 = dhom,

e. if ν+ = 0, then asymptotic approximation (16) holds, and librations are chosen near the homoclinic

instanton.
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a b

Fig. 6. Dispersion relations in Case 2: (a) dhet < dhom and (b) dhom < dhet.

Comment 3. Therefore, in Case 2 for dhom < dhet, each quantum vector ν ∈ Z
2
+ is associated with

a pair of overlapping bands I±ν =
⋃

q∈[0,1) E±
ν (q) located, as before, according to the harmonic oscillator

approximation. Exact degeneracy occurs at the endpoints corresponding to q = 1/2. The dispersion
relations and band widths are calculated by similar formulas. These bands virtually coincide, and it can
even happen that the exact degeneracy holds for all q, not only for q = 1/2, which is why the theorem
states that the pair E and q may correspond to a two-dimensional space of Bloch functions. If there is
no degeneracy, then as in Theorem 4, each E and q �= 1/2 corresponds to a unique Bloch function. We
note that such effects are very subtle, and we do not know satisfactory methods for treating them. The
dispersion relations in Theorem 5 define a curve on the plane (E, q) shown in Fig. 6b.

Remark 10. A numerical analysis allows claiming that for β = 1 (i.e., in the case of dimers) in Case 2,
the conditions in Theorem 4 are satisfied, and there are no homoclinic instantons.

5. Numerical calculations

Asymptotic formula (16) has the advantage that almost all its components can be quite easily found
numerically with any given precision. The main difficulty is to find a tunnel libration.

5.1. Seeking the tunnel libration. A libration with a given energy −E < 0 can be found numeri-
cally relatively easily thanks to the symmetry and also because of the small dimension. The method slightly
differs for Case 1 and Case 2. We set β = 1 for simplicity.

In Case 1 (see Fig. 7a), we assume that y0 is chosen such that the wells are located on the lines x = 2πn.
We solve a Cauchy problem with the initial conditions

x(0) = π, y(0) = a, px(0) =
√

2(U(π, a) − E), py = 0.

The parameter a can vary. A libration is defined by a = a0 if the trajectory returns to the line x0 = π and
intersects it at y = a0. In a small neighborhood of a0, we can construct a map A = P(a), where y = A is
the y coordinate of the next intersection with the line x = π. Clearly, P(a0) = a0.

To find a libration numerically, we start from a small segment [a1, a2] such that P(a1) > a1 and
P(a2) < a2 and use bisections until we reach the needed accuracy.

In Case 2 (see Fig. 7b), the same method can be used to find a “horizontal” libration (the one close to
a homoclinic instanton). To find a “vertical” libration (the one close to a heteroclinic instanton), we choose
initial conditions as

x(0) =
π

2
, y(0) = 0, px = r cos a, py = r sin a,
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a b

Fig. 7. Seeking a libration numerically: (a) In Case 1, we shoot from the line x = π with the initial

velocity parallel to the x axis, the magnitude of the velocity is determined by the energy E, and the

varied parameter a is the initial y coordinate. (b) In Case 2 for a “vertical” libration, we shoot from

the point x = π/2, y = 0, the velocity magnitude is determined by the energy E, and the varied

parameter a is the shooting angle.

where r =
√

2(U(π/2, 0)− E). The varied parameter a is now the shooting angle. As before, we define a
map Y = P(a), where y = Y is the y coordinate of the next intersection of the trajectory with the line
x = π/2. The libration corresponds to a solution of P(a0) = 0. Again, we start from a small segment
[a1, a2] 	 a0 and then use the bisection method.

We note that the map P is sensitive to small changes of the argument in both cases because librations
are unstable trajectories. For instance, a segment [a1, a2] that contains a libration should have length of
order 10−2 or 10−3.

We rewrite Eq. (11) as

ε = f(ε), f(ε) =
hω1

2
+

h(ω2 − λ(ε))
2

.

Its solution yields a tunnel libration. We seek it by the iterative process:

ε0 =
hω1

2
, εn = f(εn−1).

On each step, we need to find a libration with given energy and also calculate its positive Floquet exponent.
Concrete calculations (see below) indicate that the iteration process converges rapidly. The first iteration
already gives sufficiently high accuracy.

5.2. Numerical results. To illustrate our method, we take α = 1, y0 = π/2 (Case 2), and different
h ∈ [0.05, 0.09]. Therefore, the parameter h is neither too small nor too large. Given this choice, the
semiclassical approximation is applicable, and the tunnel effects are still perceptible.

In this example, Emin = −0.400488 is the minimum energy value, ω1 = 0.859700, and ω2 = 1.318743.
The band widths ΔE0, ΔE1, and ΔE2 are calculated using the asymptotic formulas mentioned above with
the quantum vectors νk = (k, 0), k = 0, 1, 2 (we recall that the first component corresponds to the direction
of the instanton). The positions of these bands are shown on Fig. 8. Some of the bands cannot be thought
of as “low.” Nevertheless, the right-hand side of (16) can be numerically calculated, although it may differ
drastically from the left-hand side, as we leave the neighborhood of the bottom of the well.

In Tables 1, 2, and 3 (corresponding to ν = ν0, ν1, ν2), we show the energies of librations during the
iterative process described above. We stress that the procedure converges rapidly even in the case where
the state is quite far from the bottom of the well.

Once a tunnel libration has been found, we can easily compute the band widths (see Fig. 9, where we
present the final numerical results).
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Fig. 8. Energy levels Eν(h): the lowest value is Emin, then Eν(h) for ν = ν0, ν1, ν2, the value E = 0

is the next critical point of U(x, y).

Table 1
Iteration h = 0.05 h = 0.06 h = 0.07 h = 0.08 h = 0.09

0 −0.378996 −0.374698 −0.370399 −0.366101 −0.361802
1 −0.377707 −0.373156 −0.368607 −0.36406 −0.359514
2 −0.377709 −0.373158 −0.36861 −0.364063 −0.359519

Table 2
Iteration h = 0.05 h = 0.06 h = 0.07 h = 0.08 h = 0.09

0 −0.336011 −0.323116 −0.31022 −0.297325 −0.284429
1 −0.334764 −0.32163 −0.308499 −0.29537 −0.282242
2 −0.334765 −0.321632 −0.308501 −0.295372 −0.282244

Table 3
Iteration h = 0.05 h = 0.06 h = 0.07 h = 0.08 h = 0.09

0 −0.293026 −0.271534 −0.250041 −0.228548 −0.207056
1 −0.291807 −0.270083 −0.24836 −0.226639 −0.204918
2 −0.291807 −0.270083 −0.248361 −0.22664 −0.204919

log ΔEν(h)

Fig. 9. Band widths on a logarithmic scale.

Concluding this section, we emphasize that this algorithm works well for arbitrarily small h, although
a greater accuracy of numerical integration may be required.
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6. Spectral bands, Wannier functions, and their asymptotic
approximations

In this section, we give a “hand-waving” explanation of some of our results presented in Sec. 4. We
do not add mathematically rigorous meaning to this argument, because rigorous proofs by another method
follow below. For simplicity, we restrict ourself to a one-dimensional case (Theorem 1), but the arguments
can be easily extended to Case 1.

We recall a useful formula relating Bloch function Φm(x, q) to the Wannier functions (see [6]). Because
the functions Φm(x, q) are one-periodic in q, they can be expanded in Fourier series:

Φm(x, q) =
∑

l∈Z

cl(x)e2πiql, (20)

where it follows from Bloch condition (6) that cl(x) = c0(x − 2πl). The function c0 is called a Wannier
function and is denoted by ζm(x). Hence,

Φm(x, q) =
∞
∑

l=−∞
ζm(x − 2πl, y)e2πiql. (21)

Proposition 3. The Wannier functions ζm(x)

1. are even,

2. decay exponentially as x → ∞, and

3. are quasimodes, i.e., functions satisfying the Schrödinger equation up to an error exponentially small

in h.

Corollary 1. The Wannier functions ζm admit a WKB-type approximation ζm = (A+O(h))e−S(x)/h.

Remark 11. This approximation is close to the Gaussian exponential function (S = αx2/2) in a
neighborhood of a minimum of the potential v(x).

The idea of the proof of Proposition 3 is presented in Appendix B.

We define a normalized Wannier function ζm
0 = ζm/‖ζm‖. The following result is a version of the

Landau–Lifshitz formula (see [5]).

Proposition 4. The dispersion relation for the mth band of one-dimensional operator (5) (for all

0 < q < 1) is

Em(q) − Em(0) = −2h2ζm
0 (π)ζm′

0 (π)(1 − cos 2πq)(1 + o(1)). (22)

The idea of the proof Proposition 4 is presented in Appendix C.

To derive Theorem 1 from Proposition 4, we should evaluate ζm
0 (π) and (ζm

0 )′(π) from the Hamilton–
Jacobi and transport equations with sufficient accuracy. We postpone the details of this argument until
Sec. 8.
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7. Interaction matrix

In this section, we recall the main facts from the Helffer–Sjöstrand theory, presented in [3], about the
semiclassical asymptotic approximation of a Schrödinger operator with a potential with a finite number of
wells. The operator acts in L2(M), where for our purposes we can take a cylinder or a circle as the manifold
M , i.e.,

M =
{

x

(

mod
2πN

β

)

, y ∈ R
n−1

}

, n = 1, 2.

We assume that the potential ˜U is a smooth function such that ˜U → ∞ as y → ∞. We do not yet
impose any symmetry assumption. Let z1, . . . , zm ∈ M be global minimums (wells) of ˜U , and let them be
nonresonant, i.e., for all 1 ≤ l ≤ m,

n
∑

j=1

kjωl,j �= 0 for all 0 �= k ∈ Z
n,

where ωl,j are harmonic oscillator frequencies associated with the lth well.
It is well known that up to O(h∞), the spectrum (more precisely, its lower part) of ̂H is just the union

of the spectra Specl, l = 1, . . . , m, associated with each well. Namely, we take any small neighborhood Ωl

of some well zl and then multiply ˜U by a cutoff function with support in Ωl. Then Specl is simply the
spectrum of the Schrödinger operator with Dirichlet boundary conditions on ∂Ωl.

Principle terms of eigenvalues in Specl are determined from the harmonic oscillator approximation:

Specl =
{ n

∑

j=1

ωl,jh

2
(2νj + 1) + O(h2), ν = (ν1, . . . , νn) ∈ Z

n
+

}

.

We note that all principle terms in Specl are distinct because of the nonresonance assumption.
We assume that the lower parts of Specl coincide up to O(h∞) (e.g., because of a symmetry, but not

necessarily). The spectrum of ̂H is then m-fold nearly degenerate (up to O(h∞)).
We fix ν ∈ Z

n
+ and define I as a small (∼ h2) interval containing exactly one eigenvalue of each Specl

associated with ν.
We let dE(u, v) denote the distance between u and v on M in the Jacobi metric

√

2(˜U(x, y) − E) ds.
We define the distance between wells as σ0 = minj �=k d0(zj, zk). We choose a small δ > 0 and an arbitrary
σ ∈ (0, σ0 − δ).

We let B(z, r) ⊂ M denote a ball of radius r in the sense of the Jacobi distance d0 with the center z.
We set Bk = B(zk, δ) and Mj = M \

⋃

k �=j Bk and let ̂Hj be a self-adjoint extension of ̂H on L2(Mj) with
Dirichlet boundary conditions. The spectrum Spec ̂Hj is nondegenerate, and I ∩ Spec ̂Hj contains a single
element Ej . Let ψj be the associated normalized eigenfunctions.

Theorem 6 [3]. 1. Under the above assumptions, I∩Spec ̂H contains exactly m eigenvalues (counting

multiplicities).
2. The matrix P of the operator ̂H |Vν , where Vν is the span of the eigenfunctions from point 1, in some

orthonormal basis has the form

P = diag(E1, . . . , Em) + W + O(e−2σ/h),

where the matrix W = (wjk) has the elements

wjk =
h2

2

∫

∂Ωjk

(

ψj
∂ψk

∂n
− ψk

∂ψj

∂n

)

dS + O(e−2σ/h), (23)
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Ωjk ⊂ M is a domain such that

zj ∈ Ωjk, zk /∈ Ωjk, ∂Ωjk ⊂ Mj ∩ Mk,

and n is the outward normal to the surface ∂Ωjk.

The matrix P is called an interaction matrix.

Remark 12. The basis in Theorem 6 is close to a nearly orthonormal system ψ1, . . . , ψn.

Remark 13. It can be shown that wjk = wkj .

For practical calculations, we can replace ψj in (23) with their tunnel WKB approximations

˜ψj(z) =
∞
∑

l=0

Aj
l (z)e−Sj(z)/h,

where the phase Sj is just the Agmon distance, Sj(z) = d0(zj , z), and Aj
l are found from standard transport

equations. Although ˜ψj are only quasimodes (i.e., they satisfy the stationary Schrödinger equation with
small discrepancy), it was shown in [3] that they are very close to the actual eigenfunctions ψj . As a result,
the statement of Theorem 6 still holds if the eigenfunctions are replaced with the quasimodes.

8. Proofs of main theorems

We start by proving Theorem 1 for m = 0 and q = 1/2 using the approach in Sec. 7. It is inessential in
our argument that the potential has form (5). It suffices to assume that v(x) is a smooth periodic function
with a unique point of global maximum. We again stress that the symmetry x → −x is not required. We
study the case of arbitrary q later (see more details in Appendix D).

We now proceed to prove the theorems in Sec. 4. For simplicity, we assume that β = 1 without loss of
generality.

Proof of Theorem 3. We first establish the estimates and asymptotic approximations for the band
widths (i.e., dwell on the case q = 1/2). For this, we consider the operator ̂H on the cylinder Z(2). According
to Theorem 6, the operator ̂H |Vν is determined by the matrix

P = EI + W + O(e−2σ/h) ≡
(

E w12

w12 E

)

+ O(e−2σ/h).

The eigenvalues and eigenvectors of the matrix EI + W are

v1 = (1, 1), v2 = (1,−1), λ1 = E − w12, λ2 = E + w12.

Hence, the space V = Vν can be decomposed into a direct sum of the one-dimensional invariant subspaces
V(1) and V(2) corresponding to λ1 and λ2.

We introduce the symmetry operator Gψ(x, y) = ψ(x + 2π, y). Clearly, its eigenvalues are {±1}.
Because ̂H commutes with G, the spaces V(1) and V(2) are invariant under G. Therefore, V(1) and V(2)

are spanned by 4π-periodic functions. From the form of the eigenvectors of EI + W , using Remark 12, we
easily see that V(1) consists of 2π-periodic functions and V(2) consists of 2π-antiperiodic functions.
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We have thus found two points of the spectrum that correspond to Bloch functions with q = 0 and
q = 1/2. The band width is then just the difference between the eigenvalues of P , i.e., it has the asymptotic
approximation 2w12. Using the symmetry x → −x, we obtain

Eν

(

1
2

)

− Eν(0) = 2w12(1 + o(1)) = h2(1 + o(1))
∫

Σ

(

ψ1
∂ψ2

∂x
− ψ2

∂ψ1

∂x

)

dy, h → 0,

where Σ is a small segment of the line x = π containing the intersection with the instanton. It is easy to
see that we obtain the same expression that arises in the double-well problem. It is now possible to use
known estimates [7] to obtain point d and asymptotic approximations (see [10], [11], [20]) to prove point e.

Namely, Case 0 with m = 0 was considered in [10], and Case 1 was considered later in [11]. A generalization
to arbitrary m was obtained in [20].

We now derive the dispersion relations. We take q = l/N for N = 2n and the cylinder Z(N). The
potential then has N wells, and W = w12ΩN , where

ΩN = (ωjk) ∈ R
N2

: ωjk = 0, except ωj, j+1 = ωj+1, j = 1, (24)

where 1 ≤ j ≤ N and the indices are understood modulo N . The eigenvectors and eigenvalues of this
matrix are

vk = (1, eπik/n, e2πik/n, . . . , eπik(2n−1)/n), λk = 2w1 2 cos
πk

n
, (25)

where k = 0, . . . , 2n− 1. Therefore, the space V = Vν can be decomposed into a direct sum of the invariant
subspaces V(0), . . . , V(n) corresponding to λk and λ2n−k, and

dimV(0) = dimV(n) = 1, dimV(k) = 2, 1 < k < n.

We introduce a symmetry operator acting by the same rule as before, Gψ(x, y) = ψ(x + 2π, y), but
now in the space L2(Z(N)). Clearly, its eigenvalues are the 2nth roots of unity. Because ̂H commutes
with G, the spaces V(k) are invariant with respect to G. Hence, V(0) and V(n) are generated by a Bloch
eigenfunction with q = k/2n. Because

v0 = (1, 1, . . . , 1), vn = (1,−1, . . . , 1,−1),

using Remark 12, we easily see that V(0) is generated by a Bloch function with q = 0 and V(n) by a Bloch
function with q = 1/2.

We note that the eigenvalues of G|V(k) for 1 ≤ k < n are neither 1 nor −1. Indeed, the subspace of V
generated by Bloch eigenfunctions with q = 0, 1/2 is two-dimensional (this is easily seen by considering the
operator on the cylinder Z(2) with two wells). Therefore, the eigenvalues of G|V(k) are a complex conjugate
pair of 2nth roots of unity. It follows from (25) and also Remark 12 that V(k) are generated by a pair of
Bloch eigenfunctions with q = k/2n, (2n− k)/2n and the associated eigenvalue has the multiplicity 2.

We have thus established the dispersion relations for all q ∈ Q, and Theorem 3 is proved. �

Remark 14. It is clear that the same dispersion relation (14) is satisfied in the one-dimensional case.
The value w1 2 can be calculated as in Appendix D, and we obtain the right-hand side of (35), divided by
two for n ≥ 2. The latter follows because the instanton intersects the set ∂Ω1 2 at a single point, not at two
points. This implies Theorem 1 for m = 0 and any rational q.

The proofs of Theorems 4 and 5 are presented in Appendix E.
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Appendix A: Proof of Proposition 1

We first note that the global minimum of the potential is negative: Umin < 0. Indeed,

min
{

U(0, 0), U
(

π

β
, 0

)}

≤ −α| cos y0|.

Therefore, Umin < 0 in Case 1. In Case 2, U(0, y) has a first degree of smallness in y = 0, and therefore
again Umin < 0.

The critical points of U(x, y) are found from the equations

y + α cosβx sin(y − y0) = 0, (A.1)

sinβx cos(y − y0) = 0. (A.2)

We define Y as the set of points (x, y) where U attains its global minimum Umin. We also define the
sets

V± = {y : y ± α sin(y − y0) = 0, ± cos(y − y0) > 0},

W+ = {(0, y) : y ∈ V+}, W− =
{(

π

β
, y

)

: y ∈ V−

}

and set y∗ = miny∈V+∪V− |y|.

Lemma 1. We have

Y = {(0, y) : |y| = y∗, y ∈ V+} ∪
{(

π

β
, y

)

: |y| = y∗, y ∈ V−

}

.

Proof. We seek the global minimum among the critical points. It follows from (27) that sinx = 0
(because U ≥ 0 if cos(y − y0) = 0). It is obvious from (26) that all critical points such that U < 0 belong
to W+ ∪ W−. Further,

U(x, y) =
y2

2
−

√

α2 − y2 ∀ (x, y) ∈ W+ ∪ W−.

Hence, the closer y is to zero, the less U is. �

Lemma 2. There exists at most one y ∈ V+ such that |y| = y∗. The same holds for V−.

Proof. We suppose the contrary, i.e., ±y∗ ∈ V+. We then have

±y∗ + α sin(±y∗ − y0) = 0, cos(±y∗ − y0) > 0,

or summing the equalities, we obtain

sin(y∗ − y0) − sin(y∗ + y0) = −2 sin y0 cos y∗ = 0.

Hence, either y0 = 0 (then, obviously, y∗ = 0) or y∗ = π/2+πn. In the latter case, we obtain simultaneously
sin y0 > 0 and sin y0 < 0, which is a contradiction. �

Lemma 3. We have V− ∩ V+ = ∅.
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Proof. Otherwise, cos(y∗ − y0) is simultaneously negative and positive. �

It follows from the proved lemmas that Y contains either one or two elements. In the latter case, we
have only one remaining possibility: Y = {(0,±y∗), (0,∓y∗)}. Then

±y∗ ± α sin(±y∗ − y0) = 0, ± cos(±y∗ − y0) > 0,

or sin y∗ cos y0 = 0, whence cos y0 = 0. Indeed, y∗ = πn is impossible because cos(πn−y0) = cos(−πn−y0).
Hence, y0 = π/2.

Proposition 1 is proved.

Appendix B: Proposition 3: The idea of the proof

1. The assertion in point 1 is obvious because v(x) is also an even function.
2. The assertion in point 2 follows from the representation

ζm(x) =
1
2π

∫ 1

0

Θm(x, q)eiqx dq,

where Θm(x, q) = Φm(x, q)e−iqx is 2π-periodic in x. Using integration by parts, we can now see that
ζm(x) = O(1/x∞).

3. To prove the assertion in point 3, we substitute expansion (20) and the energy expansion

Em(q) =
∑

l∈Z

εm
l e2πilq

in the Schrödinger equation and obtain the relations

̂Hck(x) =
∑

l+s=k

εm
l cs. (A.3)

But because the band widths are exponentially small, all εl for l �= 0 are also exponentially small. Therefore,
we can write the approximation

̂Hck(x) ≈ εm
0 ck

with an exponentially small error, and ck are hence quasimodes of ̂H.

Appendix C: Proposition 4: The idea of the proof

To calculate asymptotic approximation for the band widths, we need a good approximation for the
Wannier function ζm

0 only on the segment −π ≤ x ≤ π. We multiply ζm
0 by a smooth cutoff function χ0

with the support [−2δ − π, π + 2δ] and equal to 1 for −δ − π ≤ x ≤ π + δ (the obtained function is again
denoted by ζm

0 ). This operation does not change the leading term of the asymptotic approximation. Hence,
expansion (21) admits the approximation

Φm(x, q) = ζm
0 (x) + ζm

0 (x − 2π)e2πiq + ζm
0 (x + 2π)e−2πiq (A.4)

for x ∈ [−π, π].
To simplify the notation in what follows, we write Φ(q), ζ0, and E(q) instead of Φm(x, q), ζm

0 and
Em(q). Using the Herring approach, we integrate the identity

−h2

2
(Φ(0)ΔΦ(q) − Φ(q)ΔΦ(0)) = (E(q) − E(0))Φ(q)Φ(0)
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in the limits −π ≤ x ≤ π and then by the Green formula obtain

E(q) − E(0) = −h2(Φ(0)Φ(q)′ − Φ(q)Φ(0)′)|π−π

2
∫ π

−π Φ(0)Φ(q) dx
. (A.5)

Because Φ(q) are localized near x = 0, the denominator is obviously close to unity. We define

ζ+ = ζm
0 (π), ζ− = ζm

0 (−π), ζ′+ = (ζm
0 )′(π), ζ′− = (ζm

0 )′(−π).

Substituting (29) in (30), we obtain

E(q) − E(0) ∼ − h2

2
[(ζ+ + ζ−)(ζ′+ + ζ′−e2πiq) − (ζ+ + ζ−e2πiq)(ζ′+ + ζ′−) +

+ (ζ− + ζ+)(ζ′− + ζ′+e−2πiq) + (ζ− + ζ+e−2πiq)(ζ′− + ζ′+)]. (A.6)

Clearly, ζ+ = ζ− and ζ′+ = −ζ′−, and we obtain the required relation (22).

Appendix D: One-dimensional case without the symmetry x → −x

We apply Theorem 6 to operator (5) on the circle x (mod 4π). The eigenvalues of P are then E0(0)
and E0(1/2), and because of the symmetry x → x + 2π, we have

E0(0) = E + w1 2 + O

(

−2σ

h

)

, E0

(

1
2

)

= E − w1 2 + O

(

−2σ

h

)

(because the periodic and antiperiodic eigenfunctions correspond to the eigenvectors of P respectively close
to (1, 1) and (1,−1)).

The problem thus reduces to finding an asymptotic approximation for w = w1 2:

w =
h2

2
(ψ1ψ

′
2 − ψ2ψ

′
1)|ba, −2π < b < 0 < a < 2π. (A.7)

We can obtain it by substituting the WKB approximation for ψj in (32). Namely, for j = 1, 2, we take
φj(x) = h−1/4Aj(x)e−Sj(x)/h, where Sj(x) = d(zj , x) and Aj is found from the transport equation

dAj

dx
+

AjS
′′

2
=

ω

2
Aj . (A.8)

We define w̃a,b = (h2/2)(φ1φ
′
2 −φ2φ

′
1)|a,b and calculate w̃ = w̃b. We assume that x = x0(t) is the instanton

parameterized as
x0 → 0, t → −∞, x0(t) → 2π, t → +∞, x0(0) = b.

Then
|w̃| = h1/2A1(x0(0))A2(x0(0))|ẋ0(0)|e−σ0/h(1 + o(1)), h → 0, (A.9)

where σ0 is the Jacobi length of the instanton. We also define aj(t) = Aj(x0(t)).

Proposition 5. We have the asymptotic approximation

|w̃| =
(

hωγ−γ+

π

)1/2

e−σ0/h(1 + o(1)), h → 0,

where γ± = limt→±∞ |ẋ0(t)|e∓ωt.
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Proof. It follows from (33) that

a1(t) = a1(0) exp
[

−1
2

∫ t

0

S′′(x0(τ)) dτ

]

e−ωt/2 = a1(0)
∣

∣

∣

∣

ẋ0(0)
ẋ0(t)

∣

∣

∣

∣

1/2

e−ωt/2,

and from the harmonic oscillator approximation, limt→−∞ a1(t) = (ω/π)1/4, whence we obtain

a1(0) =
(

ω

πẋ2
0

)1/4√
γ−.

Similar calculations for a2(0) finish the proof. �

The next step is to substitute the action Sh,0 given by (9) in the exponent. It was shown in [11] that

σ0 = Sh,0 +
h

2
+ h log 2 +

hω(T−
h + T +

h )
2

+ o(h),

where T±
h > 0 is the time of movement along the instanton x0(t) from the point x±(h, 0) to b (see (9)).

Therefore,

|w̃| =
1
2

(

hωγ−γ+

πe

)1/2

eω(T−
h

+T+
h

)/2e−Sh,0/h(1 + o(1)).

Further,
γ± = lim

ε→0
eωT±(ε)|ẋ0(T±(ε))| = lim

ε→0
eωT±(ε)

√
2ε,

where T±(ε) = T±
2ε/ω. Hence,

eωT±
h =

γ±√
ωh

(1 + o(1)),

and finally

|w̃b| =
ωh

2
√

πe
e−Sh,0/h(1 + o(1)).

A similar formula holds for w̃a, and

w̃b − w̃a = b0
ωh

π
e−Sh,0/h(1 + o(1)), (A.10)

where b0 is given by (17).
To prove that the right-hand side of (35) gives a correct asymptotic approximation for w, we note that

ψj(x) = φ(x) + O(h3/4e−Sj(x)/h), ψ′
j(x) = φ′(x) + O(h−1/4e−Sj(x)/h)

uniformly in x (see [3]). Hence, asymptotic approximation (34) also holds for ψ1 and ψ2. Theorem 1 is thus
proved for m = 0 and q = 1/2.

Appendix E: Proofs of Theorems 4 and 5

We first study eigenfunctions periodic and antiperiodic in x. The potential U on the cylinder Z(2) has
four wells denoted by

z1 = (0, y∗), z2 = (π,−y∗), z3 = (2π, y∗), z4 = (3π,−y∗).
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a b

Fig. 10. Spectral bands in Case 2: the white and black dots are the respective periodic and

antiperiodic states. The bands (a) have the widths 2A and are adjacent if dhet < dhom and (b) overlap

and have the widths 2B if dhom < dhet.

We set A = w1 2 and B = w1 3. The leading term of the matrix P is then equal to

W =

⎛

⎜

⎜

⎜

⎜

⎝

E A B A

A E A B

B A E A

A B A E

⎞

⎟

⎟

⎟

⎟

⎠

, (A.11)

and the eigenvalues and eigenvectors are hence

λ1 = E − B + 2A, v1 = (1, 1, 1, 1),

λ2 = E − B − 2A, v2 = (1,−1, 1,−1),

λ3,4 = E + B, v3, v4 ∈ Span((1, 0,−1, 0), (0, 1, 0,−1)).

(A.12)

We prove that the eigenvalues of P corresponding to λ3,4 are exactly degenerate. We introduce a
symmetry operator G1ψ(x, y) = ψ(x + π,−y). Obviously, ̂H commutes with G1, and G4

1 = Id. As before,
we decompose the four-dimensional space V into a direct sum of ̂H-invariant subspaces V(j), j = 0, 1, 2.
They are two one-dimensional spaces V(0) and V(1) associated with λ1 and λ2, and also two-dimensional
V(2) associated with λ3,4. The spaces V(j) are also G1-invariant.

Therefore, from (37) and Remark 12, we easily find that V(j), j = 0, 1, are generated by ψ1,2 such that
G1ψ1 = ψ1 and G1ψ2 = −ψ2. Both functions are Bloch functions with the quasimomentum q = 0.

Because the subspace in V generated by Bloch functions with q = 0 is two-dimensional, the eigenvalues
of G1|V(2) are ±i. Hence, V(2) corresponds to a multiplicity-two eigenvalue (the quasimomentum is q = 1/2).

Case dhet < dhom. We take σ = dhet/2. Then B = 0, and from Remark 12, we can see that the
highest and lowest eigenstates λ1,2 are associated with q = 0, and a double eigenvalue λ3,4 in the middle
is associated with q = 1/2 (see Fig. 10a). The differences |λ1,2 − λ3,4| are equal to 2A ∼ e−dhet/h and are
reducible to the same integral as in Theorem 3. Therefore, A admits the asymptotic approximation from
the right-hand side of (16).

In a more general formulation, we seek Bloch eigenfunctions with rational quasimomenta q = k/2n,
where k = 0, . . . , 2n − 1. In other words, we study 4n eigenfunctions of ̂H on the cylinder Z(2n). In
Theorem 6, we can then take W = AΩ4n (see (24)). Its eigenvectors and eigenvalues,

vk = (1, eπik/2n, e2πik/2n, . . . , eπik(4n−1)/2n), λk = 2A cos
πk

2n
,

imply dispersion relation (18).
Theorem 4 is thus proved.
Case dhom < dhet. We take σ = dhom/2 and again start with Z(2). In (36), we then have A = 0, and

from (37) according to Remark 12, we have a pair of periodic states λ1,2 and a double antiperiodic state
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λ3,4. The difference |λ1,2 − λ3,4| ∼ 2B. Also, taking σ = dhom/2m we can easily calculate |λ1 − λ2| ∼ 4A

(see Fig. 10b).
Again, we seek Bloch functions with rational quasimomenta: q = k/2n, where k = 0, . . . , 2n − 1. The

operator W in Theorem 6 now has two 2n-dimensional invariant subspaces (associated with odd and even
elements). On each space, W is determined by the matrix BΩ2n, which was studied previously.

Dispersion relation (19) hence easily follows. Theorem 5 is proved.
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