Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/112109
Title: | Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors |
Authors: | D’olimpio, G. Farias, D. Kuo, C. -N. Ottaviano, L. Lue, C. S. Boukhvalov, D. W. Politano, A. |
Issue Date: | 2022 |
Publisher: | MDPI MDPI AG |
Citation: | Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors / G. D’olimpio, D. Farias, C. -N. Kuo et al. // Materials. — 2022. — Vol. 15. — Iss. 3. — 1154. |
Abstract: | Tin diselenide (SnSe2) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe2 surface towards H2, H2O, H2S, NH3, and NO2 analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe2. The formation of a subnanometric SnO2 skin over the SnSe2 surface (self-assembled SnO2/SnSe2 heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO2 and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO2/SnSe2 heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]−1 for H2, H2S, NH3, and NO2, respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H2, H2S, NH3, and NO2, respectively. Furthermore, SnSe2-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
Keywords: | DENSITY FUNCTIONAL THEORY GAS SENSING TIN DISELENIDE VAN DER WAALS SEMICONDUCTORS AMMONIA CHEMICAL ANALYSIS CHEMICAL STABILITY DENSITY FUNCTIONAL THEORY DIGITAL STORAGE ELECTRON ENERGY LEVELS ELECTRON ENERGY LOSS SPECTROSCOPY ELECTRON SCATTERING ENERGY DISSIPATION HETEROJUNCTIONS MILLIMETER WAVES PHOTONS VAN DER WAALS FORCES X RAY PHOTOELECTRON SPECTROSCOPY AMBIENT STABILITY ANALYTES APPLICATION CAPABILITY BROAD APPLICATION DENSITY-FUNCTIONAL-THEORY GAS SENSING SEMI-CONDUCTOR SURFACES SURFACE CHEMICAL REACTIVITY VAN DER WAAL VAN DER WAAL SEMICONDUCTOR SELENIUM COMPOUNDS |
URI: | http://elar.urfu.ru/handle/10995/112109 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85124037702 |
WOS ID: | 000754918900001 |
PURE ID: | 29558654 |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma15031154 |
metadata.dc.description.sponsorship: | We acknowledge financial support from the Spanish Ministry of Science and Innovation, through project PID2019-109525RB-I00. |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85124037702.pdf | 22,54 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.