Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112109
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorD’olimpio, G.en
dc.contributor.authorFarias, D.en
dc.contributor.authorKuo, C. -N.en
dc.contributor.authorOttaviano, L.en
dc.contributor.authorLue, C. S.en
dc.contributor.authorBoukhvalov, D. W.en
dc.contributor.authorPolitano, A.en
dc.date.accessioned2022-05-12T08:28:42Z-
dc.date.available2022-05-12T08:28:42Z-
dc.date.issued2022-
dc.identifier.citationTin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors / G. D’olimpio, D. Farias, C. -N. Kuo et al. // Materials. — 2022. — Vol. 15. — Iss. 3. — 1154.en
dc.identifier.issn1996-1944-
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/112109-
dc.description.abstractTin diselenide (SnSe2) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe2 surface towards H2, H2O, H2S, NH3, and NO2 analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe2. The formation of a subnanometric SnO2 skin over the SnSe2 surface (self-assembled SnO2/SnSe2 heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO2 and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO2/SnSe2 heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]−1 for H2, H2S, NH3, and NO2, respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H2, H2S, NH3, and NO2, respectively. Furthermore, SnSe2-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipWe acknowledge financial support from the Spanish Ministry of Science and Innovation, through project PID2019-109525RB-I00.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen1
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMater.2
dc.sourceMaterialsen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectGAS SENSINGen
dc.subjectTIN DISELENIDEen
dc.subjectVAN DER WAALS SEMICONDUCTORSen
dc.subjectAMMONIAen
dc.subjectCHEMICAL ANALYSISen
dc.subjectCHEMICAL STABILITYen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectDIGITAL STORAGEen
dc.subjectELECTRON ENERGY LEVELSen
dc.subjectELECTRON ENERGY LOSS SPECTROSCOPYen
dc.subjectELECTRON SCATTERINGen
dc.subjectENERGY DISSIPATIONen
dc.subjectHETEROJUNCTIONSen
dc.subjectMILLIMETER WAVESen
dc.subjectPHOTONSen
dc.subjectVAN DER WAALS FORCESen
dc.subjectX RAY PHOTOELECTRON SPECTROSCOPYen
dc.subjectAMBIENT STABILITYen
dc.subjectANALYTESen
dc.subjectAPPLICATION CAPABILITYen
dc.subjectBROAD APPLICATIONen
dc.subjectDENSITY-FUNCTIONAL-THEORYen
dc.subjectGAS SENSINGen
dc.subjectSEMI-CONDUCTOR SURFACESen
dc.subjectSURFACE CHEMICAL REACTIVITYen
dc.subjectVAN DER WAALen
dc.subjectVAN DER WAAL SEMICONDUCTORen
dc.subjectSELENIUM COMPOUNDSen
dc.titleTin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensorsen
dc.typeReviewen
dc.typeinfo:eu-repo/semantics/reviewen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/ma15031154-
dc.identifier.scopus85124037702-
local.contributor.employeeD’olimpio, G., Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, AQ, L’Aquila, 67100, Italy; Farias, D., Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain, Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, Madrid, 28049, Spain, Condensed Matter Physics Center (IFIMAC), Madrid, 28049, Spain; Kuo, C.-N., Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, 10601, Taiwan; Ottaviano, L., Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, AQ, L’Aquila, 67100, Italy, CNR-SPIN UoS L’Aquila, Via Vetoio, L’Aquila, 67100, Italy; Lue, C.S., Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, 10601, Taiwan; Boukhvalov, D.W., College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation; Politano, A., Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, AQ, L’Aquila, 67100, Italy, CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, Catania, I-95121, Italyen
local.issue3-
local.volume15-
dc.identifier.wos000754918900001-
local.contributor.departmentDepartment of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, AQ, L’Aquila, 67100, Italy; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain; Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, Madrid, 28049, Spain; Condensed Matter Physics Center (IFIMAC), Madrid, 28049, Spain; Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan; Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, 10601, Taiwan; CNR-SPIN UoS L’Aquila, Via Vetoio, L’Aquila, 67100, Italy; College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation; CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, Catania, I-95121, Italyen
local.identifier.pure29558654-
local.description.order1154-
local.identifier.eid2-s2.0-85124037702-
local.identifier.wosWOS:000754918900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85124037702.pdf22,54 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.