Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112109
Название: Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors
Авторы: D’olimpio, G.
Farias, D.
Kuo, C. -N.
Ottaviano, L.
Lue, C. S.
Boukhvalov, D. W.
Politano, A.
Дата публикации: 2022
Издатель: MDPI
MDPI AG
Библиографическое описание: Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors / G. D’olimpio, D. Farias, C. -N. Kuo et al. // Materials. — 2022. — Vol. 15. — Iss. 3. — 1154.
Аннотация: Tin diselenide (SnSe2) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe2 surface towards H2, H2O, H2S, NH3, and NO2 analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe2. The formation of a subnanometric SnO2 skin over the SnSe2 surface (self-assembled SnO2/SnSe2 heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO2 and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO2/SnSe2 heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm]−1 for H2, H2S, NH3, and NO2, respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H2, H2S, NH3, and NO2, respectively. Furthermore, SnSe2-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Ключевые слова: DENSITY FUNCTIONAL THEORY
GAS SENSING
TIN DISELENIDE
VAN DER WAALS SEMICONDUCTORS
AMMONIA
CHEMICAL ANALYSIS
CHEMICAL STABILITY
DENSITY FUNCTIONAL THEORY
DIGITAL STORAGE
ELECTRON ENERGY LEVELS
ELECTRON ENERGY LOSS SPECTROSCOPY
ELECTRON SCATTERING
ENERGY DISSIPATION
HETEROJUNCTIONS
MILLIMETER WAVES
PHOTONS
VAN DER WAALS FORCES
X RAY PHOTOELECTRON SPECTROSCOPY
AMBIENT STABILITY
ANALYTES
APPLICATION CAPABILITY
BROAD APPLICATION
DENSITY-FUNCTIONAL-THEORY
GAS SENSING
SEMI-CONDUCTOR SURFACES
SURFACE CHEMICAL REACTIVITY
VAN DER WAAL
VAN DER WAAL SEMICONDUCTOR
SELENIUM COMPOUNDS
URI: http://elar.urfu.ru/handle/10995/112109
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85124037702
Идентификатор WOS: 000754918900001
Идентификатор PURE: 29558654
ISSN: 1996-1944
DOI: 10.3390/ma15031154
Сведения о поддержке: We acknowledge financial support from the Spanish Ministry of Science and Innovation, through project PID2019-109525RB-I00.
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85124037702.pdf22,54 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.