Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/111242
Title: | Periodic Wavelets on a Multidimensional Sphere and Their Application for Function Approximation |
Other Titles: | Периодические всплески на многомерной сфере и их применение для аппроксимации функций |
Authors: | Chernykh, N. I. |
Issue Date: | 2020 |
Publisher: | Krasovskii Institute of Mathematics and Mechanics Krasovskii Institute of Mathematics and Mechanics UB RAS |
Citation: | Chernykh N. I. Periodic Wavelets on a Multidimensional Sphere and Their Application for Function Approximation [Периодические всплески на многомерной сфере и их применение для аппроксимации функций] / N. I. Chernykh // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 255-267. |
Abstract: | The author’s scheme for constructing a multiresolution analysis on a sphere in R3 with respect to the spherical coordinates, which was published in 2019, is extended to spheres in Rn (n ≥ 3). In contrast to other papers, only periodic wavelets on the axis and their tensor products are used. Approximation properties are studied only for the wavelets based on the simplest scalar wavelets of Kotel’nikov–Meyer type with the compact support of their Fourier transforms. The implementation of the idea of a smooth continuation of functions from a sphere to 2π-periodic functions in the polar coordinates analytically (without the complicated geometric interpretation made by the author earlier in R3) turned out to be very simple. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved. |
Keywords: | APPROXIMATION SCALING FUNCTION WAVELET |
URI: | http://elar.urfu.ru/handle/10995/111242 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 44314673 |
SCOPUS ID: | 85103663199 |
WOS ID: | 000609903100018 |
PURE ID: | 20231549 |
ISSN: | 0134-4889 |
DOI: | 10.21538/0134-4889-2020-26-4-255-267 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85103663199.pdf | 263,66 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.