Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/111242
Title: Periodic Wavelets on a Multidimensional Sphere and Their Application for Function Approximation
Other Titles: Периодические всплески на многомерной сфере и их применение для аппроксимации функций
Authors: Chernykh, N. I.
Issue Date: 2020
Publisher: Krasovskii Institute of Mathematics and Mechanics
Krasovskii Institute of Mathematics and Mechanics UB RAS
Citation: Chernykh N. I. Periodic Wavelets on a Multidimensional Sphere and Their Application for Function Approximation [Периодические всплески на многомерной сфере и их применение для аппроксимации функций] / N. I. Chernykh // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 255-267.
Abstract: The author’s scheme for constructing a multiresolution analysis on a sphere in R3 with respect to the spherical coordinates, which was published in 2019, is extended to spheres in Rn (n ≥ 3). In contrast to other papers, only periodic wavelets on the axis and their tensor products are used. Approximation properties are studied only for the wavelets based on the simplest scalar wavelets of Kotel’nikov–Meyer type with the compact support of their Fourier transforms. The implementation of the idea of a smooth continuation of functions from a sphere to 2π-periodic functions in the polar coordinates analytically (without the complicated geometric interpretation made by the author earlier in R3) turned out to be very simple. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.
Keywords: APPROXIMATION
SCALING FUNCTION
WAVELET
URI: http://elar.urfu.ru/handle/10995/111242
Access: info:eu-repo/semantics/openAccess
RSCI ID: 44314673
SCOPUS ID: 85103663199
WOS ID: 000609903100018
PURE ID: 20231549
ISSN: 0134-4889
DOI: 10.21538/0134-4889-2020-26-4-255-267
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85103663199.pdf263,66 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.