Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111242
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chernykh, N. I. | en |
dc.date.accessioned | 2022-05-12T08:15:19Z | - |
dc.date.available | 2022-05-12T08:15:19Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Chernykh N. I. Periodic Wavelets on a Multidimensional Sphere and Their Application for Function Approximation [Периодические всплески на многомерной сфере и их применение для аппроксимации функций] / N. I. Chernykh // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 255-267. | en |
dc.identifier.issn | 0134-4889 | - |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111242 | - |
dc.description.abstract | The author’s scheme for constructing a multiresolution analysis on a sphere in R3 with respect to the spherical coordinates, which was published in 2019, is extended to spheres in Rn (n ≥ 3). In contrast to other papers, only periodic wavelets on the axis and their tensor products are used. Approximation properties are studied only for the wavelets based on the simplest scalar wavelets of Kotel’nikov–Meyer type with the compact support of their Fourier transforms. The implementation of the idea of a smooth continuation of functions from a sphere to 2π-periodic functions in the polar coordinates analytically (without the complicated geometric interpretation made by the author earlier in R3) turned out to be very simple. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en1 |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics UB RAS | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Tr. Inst. Mat. Meh. UrO RAN | 2 |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | APPROXIMATION | en |
dc.subject | SCALING FUNCTION | en |
dc.subject | WAVELET | en |
dc.title | Periodic Wavelets on a Multidimensional Sphere and Their Application for Function Approximation | en |
dc.title.alternative | Периодические всплески на многомерной сфере и их применение для аппроксимации функций | ru |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 44314673 | - |
dc.identifier.doi | 10.21538/0134-4889-2020-26-4-255-267 | - |
dc.identifier.scopus | 85103663199 | - |
local.contributor.employee | Chernykh, N.I., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federation | en |
local.description.firstpage | 255 | - |
local.description.lastpage | 267 | - |
local.issue | 4 | - |
local.volume | 26 | - |
dc.identifier.wos | 000609903100018 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg620108, Russian Federation; Ural Federal University, Yekaterinburg, 620000, Russian Federation | en |
local.identifier.pure | 20231549 | - |
local.identifier.eid | 2-s2.0-85103663199 | - |
local.identifier.wos | WOS:000609903100018 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85103663199.pdf | 263,66 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.