Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102814
Title: | Numerical algorithm for fractional order population dynamics model with delay ЧИСЛЕННЫЙ АЛГОРИТМ ДЛЯ МОДЕЛИ ПОПУЛЯЦИОННОЙ ДИНАМИКИ ДРОБНОГО ПОРЯДКА С ЗАПАЗДЫВАНИЕМ |
Authors: | Vladimirovna, G. T. |
Issue Date: | 2021 |
Publisher: | Udmurt State University |
Citation: | Vladimirovna G. T. Numerical algorithm for fractional order population dynamics model with delay / G. T. Vladimirovna. — DOI 10.35634/2226-3594-2021-57-03 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2021. — Vol. 57. — P. 91-103. |
Abstract: | For a fractional-diffusion equation with nonlinearity in the differentiation operator and with the effect of functional delay, an implicit numerical method is constructed based on the approximation of the fractional derivative and the use of interpolation and extrapolation of discrete history. The source of this problem is a generalized model from population theory. Using a fractional discrete analogue of Gronwall's lemma, the convergence of the method is proved under certain conditions. The resulting system of nonlinear equations using Newton's method is reduced to a sequence of linear systems with tridiagonal matrices. Numerical results are given for a test example with distributed delay and a model example from the theory of population with concentrated constant delay. © 2021 Udmurt State University. All right reserved. |
Keywords: | DIFFERENCE SCHEME DIFFERENTIATION WITH NONLINEARITY FRACTIONAL-DIFFUSION EQUATION FUNCTIONAL DELAY NEWTON'S METHOD ORDER OF CONVERGENCE POPULATION MODEL |
URI: | http://elar.urfu.ru/handle/10995/102814 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 46113051 |
SCOPUS ID: | 85108950409 |
WOS ID: | 000661445200003 |
PURE ID: | 22130833 |
ISSN: | 22263594 |
DOI: | 10.35634/2226-3594-2021-57-03 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85108950409.pdf | 183,61 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.