Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/102814
Title: Numerical algorithm for fractional order population dynamics model with delay
ЧИСЛЕННЫЙ АЛГОРИТМ ДЛЯ МОДЕЛИ ПОПУЛЯЦИОННОЙ ДИНАМИКИ ДРОБНОГО ПОРЯДКА С ЗАПАЗДЫВАНИЕМ
Authors: Vladimirovna, G. T.
Issue Date: 2021
Publisher: Udmurt State University
Citation: Vladimirovna G. T. Numerical algorithm for fractional order population dynamics model with delay / G. T. Vladimirovna. — DOI 10.35634/2226-3594-2021-57-03 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2021. — Vol. 57. — P. 91-103.
Abstract: For a fractional-diffusion equation with nonlinearity in the differentiation operator and with the effect of functional delay, an implicit numerical method is constructed based on the approximation of the fractional derivative and the use of interpolation and extrapolation of discrete history. The source of this problem is a generalized model from population theory. Using a fractional discrete analogue of Gronwall's lemma, the convergence of the method is proved under certain conditions. The resulting system of nonlinear equations using Newton's method is reduced to a sequence of linear systems with tridiagonal matrices. Numerical results are given for a test example with distributed delay and a model example from the theory of population with concentrated constant delay. © 2021 Udmurt State University. All right reserved.
Keywords: DIFFERENCE SCHEME
DIFFERENTIATION WITH NONLINEARITY
FRACTIONAL-DIFFUSION EQUATION
FUNCTIONAL DELAY
NEWTON'S METHOD
ORDER OF CONVERGENCE
POPULATION MODEL
URI: http://elar.urfu.ru/handle/10995/102814
Access: info:eu-repo/semantics/openAccess
RSCI ID: 46113051
SCOPUS ID: 85108950409
WOS ID: 000661445200003
PURE ID: 22130833
ISSN: 22263594
DOI: 10.35634/2226-3594-2021-57-03
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85108950409.pdf183,61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.