Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/102814
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVladimirovna, G. T.en
dc.date.accessioned2021-08-31T15:05:29Z-
dc.date.available2021-08-31T15:05:29Z-
dc.date.issued2021-
dc.identifier.citationVladimirovna G. T. Numerical algorithm for fractional order population dynamics model with delay / G. T. Vladimirovna. — DOI 10.35634/2226-3594-2021-57-03 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2021. — Vol. 57. — P. 91-103.en
dc.identifier.issn22263594-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108950409&doi=10.35634%2f2226-3594-2021-57-03&partnerID=40&md5=46e9040605ee957bf2ad122be5f07b62
dc.identifier.otherhttps://journals.udsu.ru/mathematics/article/download/6048/5474m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102814-
dc.description.abstractFor a fractional-diffusion equation with nonlinearity in the differentiation operator and with the effect of functional delay, an implicit numerical method is constructed based on the approximation of the fractional derivative and the use of interpolation and extrapolation of discrete history. The source of this problem is a generalized model from population theory. Using a fractional discrete analogue of Gronwall's lemma, the convergence of the method is proved under certain conditions. The resulting system of nonlinear equations using Newton's method is reduced to a sequence of linear systems with tridiagonal matrices. Numerical results are given for a test example with distributed delay and a model example from the theory of population with concentrated constant delay. © 2021 Udmurt State University. All right reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectDIFFERENCE SCHEMEen
dc.subjectDIFFERENTIATION WITH NONLINEARITYen
dc.subjectFRACTIONAL-DIFFUSION EQUATIONen
dc.subjectFUNCTIONAL DELAYen
dc.subjectNEWTON'S METHODen
dc.subjectORDER OF CONVERGENCEen
dc.subjectPOPULATION MODELen
dc.titleNumerical algorithm for fractional order population dynamics model with delayen
dc.titleЧИСЛЕННЫЙ АЛГОРИТМ ДЛЯ МОДЕЛИ ПОПУЛЯЦИОННОЙ ДИНАМИКИ ДРОБНОГО ПОРЯДКА С ЗАПАЗДЫВАНИЕМru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46113051-
dc.identifier.doi10.35634/2226-3594-2021-57-03-
dc.identifier.scopus85108950409-
local.contributor.employeeVladimirovna, G.T., Department of Computational Mathematics and Computer Science, Ural Federal University, pr. Lenina 51, Yekaterinburg, 620000, Russian Federation
local.description.firstpage91-
local.description.lastpage103-
local.volume57-
dc.identifier.wos000661445200003-
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Ural Federal University, pr. Lenina 51, Yekaterinburg, 620000, Russian Federation
local.identifier.pure22130833-
local.identifier.eid2-s2.0-85108950409-
local.identifier.wosWOS:000661445200003-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85108950409.pdf183,61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.