Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102759
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFriedland, L.en
dc.contributor.authorShagalov, A. G.en
dc.date.accessioned2021-08-31T15:05:15Z-
dc.date.available2021-08-31T15:05:15Z-
dc.date.issued2016-
dc.identifier.citationFriedland L. Parametric autoresonant excitation of the nonlinear Schrödinger equation / L. Friedland, A. G. Shagalov. — DOI 10.1103/PhysRevE.94.042216 // Physical Review E. — 2016. — Vol. 94. — Iss. 4. — 042216.en
dc.identifier.issn24700045-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84992699712&doi=10.1103%2fPhysRevE.94.042216&partnerID=40&md5=2fcd33712a2b44fce8b781dec6b26544
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102759-
dc.description.abstractParametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics. © 2016 American Physical Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. E2
dc.sourcePhysical Review Een
dc.subjectSCHRODINGER EQUATIONen
dc.subjectAUTORESONANT EXCITATIONen
dc.subjectDINGER EQUATIONen
dc.subjectNONLINEAR SCHRODINGERen
dc.subjectPARAMETRIC EXCITATIONSen
dc.subjectSPATIAL HARMONICen
dc.subjectSPATIAL HARMONICS EXPANSIONen
dc.subjectVARIATIONAL PRINCIPLESen
dc.subjectWEAKLY NON-LINEARen
dc.subjectNONLINEAR EQUATIONSen
dc.titleParametric autoresonant excitation of the nonlinear Schrödinger equationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1103/PhysRevE.94.042216-
dc.identifier.scopus84992699712-
local.contributor.employeeFriedland, L., Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
local.contributor.employeeShagalov, A.G., Institute of Metal Physics, Ekaterinburg, 620990, Russian Federation, Ural Federal University, Mira 19, Ekaterinburg, 620002, Russian Federation
local.issue4-
local.volume94-
dc.identifier.wos000386386300005-
local.contributor.departmentRacah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
local.contributor.departmentInstitute of Metal Physics, Ekaterinburg, 620990, Russian Federation
local.contributor.departmentUral Federal University, Mira 19, Ekaterinburg, 620002, Russian Federation
local.identifier.pure1234195-
local.description.order042216-
local.identifier.eid2-s2.0-84992699712-
local.identifier.wosWOS:000386386300005-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84992699712.pdf942,41 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.