Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102759
Title: | Parametric autoresonant excitation of the nonlinear Schrödinger equation |
Authors: | Friedland, L. Shagalov, A. G. |
Issue Date: | 2016 |
Publisher: | American Physical Society |
Citation: | Friedland L. Parametric autoresonant excitation of the nonlinear Schrödinger equation / L. Friedland, A. G. Shagalov. — DOI 10.1103/PhysRevE.94.042216 // Physical Review E. — 2016. — Vol. 94. — Iss. 4. — 042216. |
Abstract: | Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics. © 2016 American Physical Society. |
Keywords: | SCHRODINGER EQUATION AUTORESONANT EXCITATION DINGER EQUATION NONLINEAR SCHRODINGER PARAMETRIC EXCITATIONS SPATIAL HARMONIC SPATIAL HARMONICS EXPANSION VARIATIONAL PRINCIPLES WEAKLY NON-LINEAR NONLINEAR EQUATIONS |
URI: | http://elar.urfu.ru/handle/10995/102759 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84992699712 |
WOS ID: | 000386386300005 |
PURE ID: | 1234195 |
ISSN: | 24700045 |
DOI: | 10.1103/PhysRevE.94.042216 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84992699712.pdf | 942,41 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.