Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/102687
Title: Influence of random effects on the equilibrium modes in the population dynamics model
Влияние случайного воздействия на равновесные режимы модели популяционной динамики
Authors: Abramova, E. P.
Perevalova, T. V.
Issue Date: 2020
Publisher: Udmurt State University
Citation: Abramova E. P. Influence of random effects on the equilibrium modes in the population dynamics model / E. P. Abramova, T. V. Perevalova. — DOI 10.35634/2226-3594-2020-55-01 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 55. — P. 3-18.
Abstract: In the paper, we study a dynamic model of interacting populations of the type “predator–two prey”. A detailed parametric analysis of the equilibrium modes arising in the system is carried out. In zones of the bifurcation parameter, where the coexistence of several equilibrium regimes is found, separable surfaces are constructed. Those surfaces are the boundaries of the attraction basins of different equilibria. It is shown that the effect of an external random disturbance can destroy the equilibrium mode of coexistence of three populations and lead to a qualitatively different mode of coexistence. Such qualitative changes lead to the extinction of one or two of the three populations. Using the technique of stochastic sensitivity function and the method of confidence domains, the probabilistic mechanisms of destruction of equilibrium modes are demonstrated. A parametric analysis of the probabilities of extinction of populations for two types is carried out. The range of the bifurcation parameter and the level of noise intensity, that are the most favorable for the coexistence of three populations, are discussed. © 2020 Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. All rights reserved.
Keywords: NOISE-INDUCED EXTINCTION
POPULATION DYNAMICS
STOCHASTIC SENSITIVITY
URI: http://elar.urfu.ru/handle/10995/102687
Access: info:eu-repo/semantics/openAccess
RSCI ID: 42949297
SCOPUS ID: 85093906917
WOS ID: 000547994700001
PURE ID: 13200000
ISSN: 22263594
DOI: 10.35634/2226-3594-2020-55-01
metadata.dc.description.sponsorship: This study was supported by the Russian Science Foundation, grant no. 16–11–10098.
RSCF project card: 16-11-10098
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85093906917.pdf4,97 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.