Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102687
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAbramova, E. P.en
dc.contributor.authorPerevalova, T. V.en
dc.date.accessioned2021-08-31T15:04:46Z-
dc.date.available2021-08-31T15:04:46Z-
dc.date.issued2020-
dc.identifier.citationAbramova E. P. Influence of random effects on the equilibrium modes in the population dynamics model / E. P. Abramova, T. V. Perevalova. — DOI 10.35634/2226-3594-2020-55-01 // Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. — 2020. — Vol. 55. — P. 3-18.en
dc.identifier.issn22263594-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85093906917&doi=10.35634%2f2226-3594-2020-55-01&partnerID=40&md5=bb0b9a00b7061671ae146f89e83ea188
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102687-
dc.description.abstractIn the paper, we study a dynamic model of interacting populations of the type “predator–two prey”. A detailed parametric analysis of the equilibrium modes arising in the system is carried out. In zones of the bifurcation parameter, where the coexistence of several equilibrium regimes is found, separable surfaces are constructed. Those surfaces are the boundaries of the attraction basins of different equilibria. It is shown that the effect of an external random disturbance can destroy the equilibrium mode of coexistence of three populations and lead to a qualitatively different mode of coexistence. Such qualitative changes lead to the extinction of one or two of the three populations. Using the technique of stochastic sensitivity function and the method of confidence domains, the probabilistic mechanisms of destruction of equilibrium modes are demonstrated. A parametric analysis of the probabilities of extinction of populations for two types is carried out. The range of the bifurcation parameter and the level of noise intensity, that are the most favorable for the coexistence of three populations, are discussed. © 2020 Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. All rights reserved.en
dc.description.sponsorshipThis study was supported by the Russian Science Foundation, grant no. 16–11–10098.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.relationinfo:eu-repo/grantAgreement/RSF//16-11-10098en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIzv. Inst. Mat. Inform. Udmurt. Gos. Univ.2
dc.sourceIzvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universitetaen
dc.subjectNOISE-INDUCED EXTINCTIONen
dc.subjectPOPULATION DYNAMICSen
dc.subjectSTOCHASTIC SENSITIVITYen
dc.titleInfluence of random effects on the equilibrium modes in the population dynamics modelen
dc.titleВлияние случайного воздействия на равновесные режимы модели популяционной динамикиru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi42949297-
dc.identifier.doi10.35634/2226-3594-2020-55-01-
dc.identifier.scopus85093906917-
local.contributor.employeeAbramova, E.P., Ural Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.contributor.employeePerevalova, T.V., Ural Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.description.firstpage3-
local.description.lastpage18-
local.volume55-
dc.identifier.wos000547994700001-
local.contributor.departmentUral Federal University, Pr. Lenina, 51, Yekaterinburg, 620000, Russian Federation
local.identifier.pure13200000-
local.identifier.eid2-s2.0-85093906917-
local.fund.rsf16-11-10098-
local.identifier.wosWOS:000547994700001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85093906917.pdf4,97 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.