Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/102188
Title: | Algebraic synchronization criterion and computing reset words |
Authors: | Berlinkov, M. V. Szykuła, M. |
Issue Date: | 2016 |
Publisher: | Elsevier Inc. |
Citation: | Berlinkov M. V. Algebraic synchronization criterion and computing reset words / M. V. Berlinkov, M. Szykuła. — DOI 10.1016/j.ins.2016.07.049 // Information Sciences. — 2016. — Vol. 369. — P. 718-730. |
Abstract: | We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain new upper bounds for automata with a short word of small rank. The results are applied to make several improvements in the area. In particular, we improve the upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(nlog3n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary n-state decoder is at most O(nlog n). We prove the Černý conjecture for n-state automata with a letter of rank ≤6n−63. In another corollary, we show that the probability that the Černý conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and that the expected value of the reset threshold is at most n3/2+o(1). Moreover, all of our bounds are constructible. We present suitable polynomial algorithms for the task of finding a reset word of length within our bounds. © 2016 |
Keywords: | HUFFMAN CODE PREFIX CODE RANDOM AUTOMATON RESET WORD SYNCHRONIZING AUTOMATON ČERNÝ CONJECTURE ALGEBRA AUTOMATA THEORY BINS CODES (SYMBOLS) DECODING LINEAR ALGEBRA HUFFMAN CODE PREFIX CODES RANDOM AUTOMATON RESET WORDS SYNCHRONIZING AUTOMATA SYNCHRONIZATION |
URI: | http://elar.urfu.ru/handle/10995/102188 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84994525822 |
WOS ID: | 000383292500045 |
PURE ID: | 65af5829-b5ef-43c0-bbfb-2406c7886152 1304223 |
ISSN: | 200255 |
DOI: | 10.1016/j.ins.2016.07.049 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84994525822.pdf | 298,56 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.