Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102188
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBerlinkov, M. V.en
dc.contributor.authorSzykuła, M.en
dc.date.accessioned2021-08-31T15:02:21Z-
dc.date.available2021-08-31T15:02:21Z-
dc.date.issued2016-
dc.identifier.citationBerlinkov M. V. Algebraic synchronization criterion and computing reset words / M. V. Berlinkov, M. Szykuła. — DOI 10.1016/j.ins.2016.07.049 // Information Sciences. — 2016. — Vol. 369. — P. 718-730.en
dc.identifier.issn200255-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994525822&doi=10.1016%2fj.ins.2016.07.049&partnerID=40&md5=ca80866b1973a7aec9c96d8c3706d471
dc.identifier.otherhttp://arxiv.org/pdf/1412.8363m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102188-
dc.description.abstractWe refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain new upper bounds for automata with a short word of small rank. The results are applied to make several improvements in the area. In particular, we improve the upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(nlog3n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary n-state decoder is at most O(nlog n). We prove the Černý conjecture for n-state automata with a letter of rank ≤6n−63. In another corollary, we show that the probability that the Černý conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and that the expected value of the reset threshold is at most n3/2+o(1). Moreover, all of our bounds are constructible. We present suitable polynomial algorithms for the task of finding a reset word of length within our bounds. © 2016en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceInf Sci2
dc.sourceInformation Sciencesen
dc.subjectHUFFMAN CODEen
dc.subjectPREFIX CODEen
dc.subjectRANDOM AUTOMATONen
dc.subjectRESET WORDen
dc.subjectSYNCHRONIZING AUTOMATONen
dc.subjectČERNÝ CONJECTUREen
dc.subjectALGEBRAen
dc.subjectAUTOMATA THEORYen
dc.subjectBINSen
dc.subjectCODES (SYMBOLS)en
dc.subjectDECODINGen
dc.subjectLINEAR ALGEBRAen
dc.subjectHUFFMAN CODEen
dc.subjectPREFIX CODESen
dc.subjectRANDOM AUTOMATONen
dc.subjectRESET WORDSen
dc.subjectSYNCHRONIZING AUTOMATAen
dc.subjectSYNCHRONIZATIONen
dc.titleAlgebraic synchronization criterion and computing reset wordsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.ins.2016.07.049-
dc.identifier.scopus84994525822-
local.contributor.employeeBerlinkov, M.V., Institute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.contributor.employeeSzykuła, M., Institute of Computer Science, University of Wrocław, Poland
local.description.firstpage718-
local.description.lastpage730-
local.volume369-
dc.identifier.wos000383292500045-
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.contributor.departmentInstitute of Computer Science, University of Wrocław, Poland
local.identifier.pure65af5829-b5ef-43c0-bbfb-2406c7886152uuid
local.identifier.pure1304223-
local.identifier.eid2-s2.0-84994525822-
local.identifier.wosWOS:000383292500045-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84994525822.pdf298,56 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.