Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102188
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Berlinkov, M. V. | en |
dc.contributor.author | Szykuła, M. | en |
dc.date.accessioned | 2021-08-31T15:02:21Z | - |
dc.date.available | 2021-08-31T15:02:21Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Berlinkov M. V. Algebraic synchronization criterion and computing reset words / M. V. Berlinkov, M. Szykuła. — DOI 10.1016/j.ins.2016.07.049 // Information Sciences. — 2016. — Vol. 369. — P. 718-730. | en |
dc.identifier.issn | 200255 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994525822&doi=10.1016%2fj.ins.2016.07.049&partnerID=40&md5=ca80866b1973a7aec9c96d8c3706d471 | |
dc.identifier.other | http://arxiv.org/pdf/1412.8363 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102188 | - |
dc.description.abstract | We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain new upper bounds for automata with a short word of small rank. The results are applied to make several improvements in the area. In particular, we improve the upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(nlog3n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary n-state decoder is at most O(nlog n). We prove the Černý conjecture for n-state automata with a letter of rank ≤6n−63. In another corollary, we show that the probability that the Černý conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and that the expected value of the reset threshold is at most n3/2+o(1). Moreover, all of our bounds are constructible. We present suitable polynomial algorithms for the task of finding a reset word of length within our bounds. © 2016 | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Inf Sci | 2 |
dc.source | Information Sciences | en |
dc.subject | HUFFMAN CODE | en |
dc.subject | PREFIX CODE | en |
dc.subject | RANDOM AUTOMATON | en |
dc.subject | RESET WORD | en |
dc.subject | SYNCHRONIZING AUTOMATON | en |
dc.subject | ČERNÝ CONJECTURE | en |
dc.subject | ALGEBRA | en |
dc.subject | AUTOMATA THEORY | en |
dc.subject | BINS | en |
dc.subject | CODES (SYMBOLS) | en |
dc.subject | DECODING | en |
dc.subject | LINEAR ALGEBRA | en |
dc.subject | HUFFMAN CODE | en |
dc.subject | PREFIX CODES | en |
dc.subject | RANDOM AUTOMATON | en |
dc.subject | RESET WORDS | en |
dc.subject | SYNCHRONIZING AUTOMATA | en |
dc.subject | SYNCHRONIZATION | en |
dc.title | Algebraic synchronization criterion and computing reset words | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.ins.2016.07.049 | - |
dc.identifier.scopus | 84994525822 | - |
local.contributor.employee | Berlinkov, M.V., Institute of Mathematics and Computer Science, Ural Federal University, Russian Federation | |
local.contributor.employee | Szykuła, M., Institute of Computer Science, University of Wrocław, Poland | |
local.description.firstpage | 718 | - |
local.description.lastpage | 730 | - |
local.volume | 369 | - |
dc.identifier.wos | 000383292500045 | - |
local.contributor.department | Institute of Mathematics and Computer Science, Ural Federal University, Russian Federation | |
local.contributor.department | Institute of Computer Science, University of Wrocław, Poland | |
local.identifier.pure | 65af5829-b5ef-43c0-bbfb-2406c7886152 | uuid |
local.identifier.pure | 1304223 | - |
local.identifier.eid | 2-s2.0-84994525822 | - |
local.identifier.wos | WOS:000383292500045 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84994525822.pdf | 298,56 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.