Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101473
Название: | Estimates of best approximations of functions with logarithmic smoothness in the lorentz space with anisotropic norm |
Авторы: | Akishev, G. |
Дата публикации: | 2020 |
Издатель: | Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences |
Библиографическое описание: | Akishev G. Estimates of best approximations of functions with logarithmic smoothness in the lorentz space with anisotropic norm / G. Akishev. — DOI 10.15826/umj.2020.1.002 // Ural Mathematical Journal. — 2020. — Vol. 6. — Iss. 1. — P. 16-29. |
Аннотация: | In this paper, we consider the anisotropic Lorentz space L∗¯p, ¯θ (Im) of periodic functions of m variables. The Besov space B(0,α,τ)¯p, ¯θ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class B(0,α,τ)¯p, ¯θ by trigonometric polynomials under different relations between the parameters ¯p, ¯θ, and τ . The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function f ∈ L∗¯p,¯θ(1) (Im) to belong to the space L∗¯p,θ(2) (Im) in the case 1< θ2 < θj(1), j = 1, …, m, in terms of the best approximation and prove its unimprovability on the class Eλ¯p, ¯θ = {f ∈ L∗¯p,¯θ (Im): En(f)¯p,¯θ ≤ λn, n = 0, 1, …}, where En(f)¯p, ¯θ is the best approximation of the function f ∈ L∗¯p,¯θ (Im) by trigonometric polynomials of order n in each variable xj, j = 1, …, m, and λ = {λn} is a sequence of positive numbers λn ↓ 0 as n → +∞. In the second section, we establish order-exact estimates for the best approximation of functions from the class B(0,α,τ)¯p, ¯θ(1) in the space L∗¯p,θ(2) (Im). © 2020, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences. All rights reserved. |
Ключевые слова: | BEST APPROXIMATION LORENTZ SPACE NIKOL’SKII–BESOV CLASS |
URI: | http://elar.urfu.ru/handle/10995/101473 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 45372231 |
Идентификатор SCOPUS: | 85089116548 |
Идентификатор PURE: | 13679248 6e9740cc-fdfc-4e15-97dc-d9fe7010175e |
ISSN: | 24143952 |
DOI: | 10.15826/umj.2020.1.002 |
Сведения о поддержке: | This work was supported by the Competitiveness Enhancement Program of the Ural Federal University (Enactment of the Government of the Russian Federation of March 16, 2013 no. 211, agreement no. 02.A03. 21.0006 of August 27, 2013). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85089116548.pdf | 202,75 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.