Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101473
Название: Estimates of best approximations of functions with logarithmic smoothness in the lorentz space with anisotropic norm
Авторы: Akishev, G.
Дата публикации: 2020
Издатель: Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Библиографическое описание: Akishev G. Estimates of best approximations of functions with logarithmic smoothness in the lorentz space with anisotropic norm / G. Akishev. — DOI 10.15826/umj.2020.1.002 // Ural Mathematical Journal. — 2020. — Vol. 6. — Iss. 1. — P. 16-29.
Аннотация: In this paper, we consider the anisotropic Lorentz space L∗¯p, ¯θ (Im) of periodic functions of m variables. The Besov space B(0,α,τ)¯p, ¯θ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class B(0,α,τ)¯p, ¯θ by trigonometric polynomials under different relations between the parameters ¯p, ¯θ, and τ . The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function f ∈ L∗¯p,¯θ(1) (Im) to belong to the space L∗¯p,θ(2) (Im) in the case 1< θ2 < θj(1), j = 1, …, m, in terms of the best approximation and prove its unimprovability on the class Eλ¯p, ¯θ = {f ∈ L∗¯p,¯θ (Im): En(f)¯p,¯θ ≤ λn, n = 0, 1, …}, where En(f)¯p, ¯θ is the best approximation of the function f ∈ L∗¯p,¯θ (Im) by trigonometric polynomials of order n in each variable xj, j = 1, …, m, and λ = {λn} is a sequence of positive numbers λn ↓ 0 as n → +∞. In the second section, we establish order-exact estimates for the best approximation of functions from the class B(0,α,τ)¯p, ¯θ(1) in the space L∗¯p,θ(2) (Im). © 2020, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences. All rights reserved.
Ключевые слова: BEST APPROXIMATION
LORENTZ SPACE
NIKOL’SKII–BESOV CLASS
URI: http://elar.urfu.ru/handle/10995/101473
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор РИНЦ: 45372231
Идентификатор SCOPUS: 85089116548
Идентификатор PURE: 13679248
6e9740cc-fdfc-4e15-97dc-d9fe7010175e
ISSN: 24143952
DOI: 10.15826/umj.2020.1.002
Сведения о поддержке: This work was supported by the Competitiveness Enhancement Program of the Ural Federal University (Enactment of the Government of the Russian Federation of March 16, 2013 no. 211, agreement no. 02.A03. 21.0006 of August 27, 2013).
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85089116548.pdf202,75 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.