Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101473
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Akishev, G. | en |
dc.date.accessioned | 2021-08-31T14:57:33Z | - |
dc.date.available | 2021-08-31T14:57:33Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Akishev G. Estimates of best approximations of functions with logarithmic smoothness in the lorentz space with anisotropic norm / G. Akishev. — DOI 10.15826/umj.2020.1.002 // Ural Mathematical Journal. — 2020. — Vol. 6. — Iss. 1. — P. 16-29. | en |
dc.identifier.issn | 24143952 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089116548&doi=10.15826%2fumj.2020.1.002&partnerID=40&md5=2938d467518173b8f9443797f4a6b8e8 | |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/download/210/pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101473 | - |
dc.description.abstract | In this paper, we consider the anisotropic Lorentz space L∗¯p, ¯θ (Im) of periodic functions of m variables. The Besov space B(0,α,τ)¯p, ¯θ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class B(0,α,τ)¯p, ¯θ by trigonometric polynomials under different relations between the parameters ¯p, ¯θ, and τ . The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function f ∈ L∗¯p,¯θ(1) (Im) to belong to the space L∗¯p,θ(2) (Im) in the case 1< θ2 < θj(1), j = 1, …, m, in terms of the best approximation and prove its unimprovability on the class Eλ¯p, ¯θ = {f ∈ L∗¯p,¯θ (Im): En(f)¯p,¯θ ≤ λn, n = 0, 1, …}, where En(f)¯p, ¯θ is the best approximation of the function f ∈ L∗¯p,¯θ (Im) by trigonometric polynomials of order n in each variable xj, j = 1, …, m, and λ = {λn} is a sequence of positive numbers λn ↓ 0 as n → +∞. In the second section, we establish order-exact estimates for the best approximation of functions from the class B(0,α,τ)¯p, ¯θ(1) in the space L∗¯p,θ(2) (Im). © 2020, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences. All rights reserved. | en |
dc.description.sponsorship | This work was supported by the Competitiveness Enhancement Program of the Ural Federal University (Enactment of the Government of the Russian Federation of March 16, 2013 no. 211, agreement no. 02.A03. 21.0006 of August 27, 2013). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Ural Math. J. | 2 |
dc.source | Ural Mathematical Journal | en |
dc.subject | BEST APPROXIMATION | en |
dc.subject | LORENTZ SPACE | en |
dc.subject | NIKOL’SKII–BESOV CLASS | en |
dc.title | Estimates of best approximations of functions with logarithmic smoothness in the lorentz space with anisotropic norm | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 45372231 | - |
dc.identifier.doi | 10.15826/umj.2020.1.002 | - |
dc.identifier.scopus | 85089116548 | - |
local.contributor.employee | Akishev, G., L.N. Gumilyov Eurasian National University, 2 Pushkin str, Nur-Sultan, 010008, Kazakhstan, Ural Federal University, 19 Mira str, Ekaterinburg, 620002, Russian Federation | |
local.description.firstpage | 16 | - |
local.description.lastpage | 29 | - |
local.issue | 1 | - |
local.volume | 6 | - |
local.contributor.department | L.N. Gumilyov Eurasian National University, 2 Pushkin str, Nur-Sultan, 010008, Kazakhstan | |
local.contributor.department | Ural Federal University, 19 Mira str, Ekaterinburg, 620002, Russian Federation | |
local.identifier.pure | 13679248 | - |
local.identifier.pure | 6e9740cc-fdfc-4e15-97dc-d9fe7010175e | uuid |
local.identifier.eid | 2-s2.0-85089116548 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85089116548.pdf | 202,75 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.