Browsing by Subject OXIDATION

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
or enter first few letters:  
Showing results 1 to 20 of 40  next >
Issue DateTitleAuthor(s)
2017Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years afterBoukhvalov, D. W.; Bazylewski, P. F.; Kukharenko, A. I.; Zhidkov, I. S.; Ponosov, Y. S.; Kurmaev, E. Z.; Cholakh, S. O.; Lee, Y. H.; Chang, G. S.
2018Atomic and electronic structures of stable linear carbon chains on Ag-nanoparticlesBoukhvalov, D. W.; Zhidkov, I. S.; Kurmaev, E. Z.; Fazio, E.; Cholakh, S. O.; D'Urso, L.
2015The characterization of Co-nanoparticles supported on grapheneBazylewski, P.; Boukhvalov, D. W.; Kukharenko, A. I.; Kurmaev, E. Z.; Hunt, A.; Moewes, A.; Lee, Y. H.; Cholakh, S. O.; Chang, G. S.
2020Chemical instability of free-standing boron monolayers and properties of oxidized borophene sheetsLei, X.; Zatsepin, A. F.; Boukhvalov, D. W.
2019CuO-CeO2 nanocomposite catalysts produced by mechanochemical synthesisBorchers, C.; Martin, M. L.; Vorobjeva, G. A.; Morozova, O. S.; Firsova, A. A.; Leonov, A. V.; Kurmaev, E. Z.; Kukharenko, A. I.; Zhidkov, I. S.; Cholakh, S. O.
2016Cu–CeO2 nanocomposites: mechanochemical synthesis, physico-chemical properties, CO-PROX activityBorchers, C.; Martin, M. L.; Vorobjeva, G. A.; Morozova, O. S.; Firsova, A. A.; Leonov, A. V.; Kurmaev, E. Z.; Kukharenko, A. I.; Zhidkov, I. S.; Cholakh, S. O.
2012Development of SO 2-O 2 system as an oxidant at uranium leaching processesUmanskii, A. B.; Klyushnikov, A. M.
2013Effect of chemically active medium on frequency dependence of magnetic losses in soft magnetic Fe-based amorphous alloysSkulkina, N. A.; Ivanov, O. A.; Stepanova, E. A.; Pavlova, I. O.
2019Effects of Irradiation Temperature on the Response of CeO2, ThO2, and UO2 to Highly Ionizing RadiationCureton, W. F.; Palomares, R. I.; Tracy, C. L.; O'Quinn, E. C.; Walters, J.; Zdorovets, M.; Ewing, R. C.; Toulemonde, M.; Lang, M.
2012General Aspects of Isocyanide ReactivityMironov, Maxim A.
2022H/D Isotopic Exchange and Electrochemical Kinetics of Hydrogen Oxidation on Ni-Cermets with Oxygen-Ionic and Protonic ElectrolytesZakharov, D. M.; Tropin, E. S.; Osinkin, D. A.; Farlenkov, A. S.; Porotnikova, N. M.; Ananyev, M. V.
2016The mechanism for the electrooxidation of procarbazine pharmaceutical preparation in alkaline media and its mathematical descriptionTkach, V. V.; Oliveira de, S. С.; Oliveira de, S. K. B.; Ojani, R.; Elenich, O. V.; Yagodynets, P. I.
2016On the electropolishing and anodic oxidation of Ti-15Mo alloyBabilas, D.; Urbańczyk, E.; Sowa, M.; Maciej, A.; Korotin, D. M.; Zhidkov, I. S.; Basiaga, M.; Krok-Borkowicz, M.; Szyk-Warszyńska, L.; Pamuła, E.; Kurmaev, E. Z.; Cholakh, S. O.; Simka, W.
2014Oxidation of a graphite surface: The role of waterBoukhvalov, D. W.
2021Oxidative Aromatization of 4,7-dihydro-6-nitroazolo[1,5-a] Pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental SubstantiationLyapustin, D. N.; Ulomsky, E. N.; Balyakin, I. A.; Shchepochkin, A. V.; Rusinov, V. L.; Chupakhin, O. N.
2013Physicochemical investigation of anodic processes involved in silver electrowinning in refining technologyLebed', A. B.; Zaikov, Yu. P.; Potapov, A. M.; Shpoltakova, I. A.; Mal'tsev, G. I.
2022Polymer-Metal Complex Based on Copper(II) Acetate and Polyvinyl Alcohol: Thermodynamic and Catalytic PropertiesMaksotova, K. S.; Kalikh, D. Т.; Omirzakova, A. T.; Bakirova, B. S.; Akbayeva, D. N.
2012Potentiometric method for evaluating the Oxidant/Antioxidant activity of seminal and follicular fluids and clinical significance of this parameter for human reproductive functionBrainina, Kh. Z.; Gerasimova, E. L.; Varzakova, D. P.; Balezin, S. L.; Portnov, I. G.; Makutina, V. A.; Tyrchaninova, E. V.
2021Pressure oxidation of arsenic (Iii) ions in the h3aso3-fe2+-cu2+-h2so4 systemKarimov, K.; Rogozhnikov, D.; Dizer, O.; Tretiak, M.; Mamyachenkov, S.; Naboichenko, S.
2015Pronounced, Reversible, and in Situ Modification of the Electronic Structure of Graphene Oxide via Buckling below 160 KHunt, A.; McDermott, E.; Kurmaev, E. Z.; Moewes, A.