Browsing by Subject NEURAL NETWORKS

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
or enter first few letters:  
Showing results 1 to 20 of 71  next >
Issue DateTitleAuthor(s)
2023Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks AlgorithmsNizovtseva, I.; Palmin, V.; Simkin, I.; Starodumov, I.; Mikushin, P.; Nozik, A.; Hamitov, T.; Ivanov, S.; Vikharev, S.; Zinovev, A.; Svitich, V.; Mogilev, M.; Nikishina, M.; Kraev, S.; Yurchenko, S.; Mityashin, T.; Chernushkin, D.; Kalyuzhnaya, A.; Blyakhman, F.
2018Building extraction from satellite imagery using a digital surface modelDunaeva, A. V.; Kornilov, F. A.
2019Comparison of UNet, ENet, and BoxENet for Segmentation of Mast Cells in Scans of Histological SlicesKarimov, A.; Razumov, A.; Manbatchurina, R.; Simonova, K.; Donets, I.; Vlasova, A.; Khramtsova, Y.; Ushenin, K.
2021Computer vision system for the automatic asbestos content control in stonesZyuzin, V.; Ronkin, M.; Porshnev, S.; Kalmykov, A.
2023Data-Driven Machine Learning Methods for Nontechnical Losses of Electrical Energy Detection: A State-of-the-Art ReviewPazderin, A.; Kamalov, F.; Gubin, P. Y.; Safaraliev, M.; Samoylenko, V.; Mukhlynin, N.; Odinaev, I.; Zicmane, I.
2022Deep Machine Learning Potentials for Multicomponent Metallic Melts: Development, Predictability and Compositional TransferabilityRyltsev, R. E.; Chtchelkatchev, N. M.
2021Deepfake: эволюция фейка как угроза медиасредеЧертов, Д. А.; Chertov, D. A.
2023Enhancing seismic design of non-structural components implementing artificial intelligence approach: Predicting component dynamic amplification factorsBhavani, B. D.; Challagulla, S. P.; Noroozinejad, Farsangi, E.; Hossain, I.; Manne, M.
2021Generation of echocardiographic 2D images of the heart using cGANZyuzin, V.; Komleva, J.; Porshnev, S.
2023Implication of radiation on the thermal behavior of a partially wetted dovetail fin using an artificial neural networkNimmy, P.; Nagaraja, K. V.; Srilatha, P.; Karthik, K.; Sowmya, G.; Kumar, R. S. V.; Khan, U.; Hussain, S. M.; Hendy, A. S.; Ali, M. R.
2023Improving of the Generation Accuracy Forecasting of Photovoltaic Plants Based on k-Means and k-Nearest Neighbors AlgorithmsMatrenin, P. V.; Khalyasmaa, A. I.; Gamaley, V. V.; Eroshenko, S. A.; Papkova, N. A.; Sekatski, D. A.; Potachits, Y. V.
2019Machine learning in the processing and analysis of textsPtukhin, A. A.; Khrushkov, A. E.; Bozhko, E. M.; Птухин, А. А.; Хрушков, А. Е.; Божко, Е. М.
2014Methods of neural networks and pattern recognition and theirs applications to economy, engineering, and medicineМазуров, Вл. Д.; Смирнов, А. И.; Mazurov, Vl. D.; Smirnov, A. I.
2020Modeling of changes in heat resistance of nickel-based alloys using bayesian artificial neural networksAnoshina, O. V.; Trubnikova, A. S.; Milder, O. B.; Tarasov, D. A.; Ganeev, A. A.; Tyagunov, A. G.
2022Modeling the influence of the composition of refractory elements on the heat resistance of nickel alloys by a deep learning artificial neural networkTarasov, D. A.; Milder, O. B.; Tiagunov, A. G.
2023Noise-induced complex dynamics and synchronization in the map-based Chialvo neuron modelBashkirtseva, I.; Ryashko, L.; Used, J.; Seoane, J. M.; Sanjuán, M. A. F.
2018Nonlinear mean-field dynamo and prediction of solar activitySafiullin, N.; Kleeorin, N.; Porshnev, S.; Rogachevskii, I.; Ruzmaikin, A.
2023Operational Forecasting of Wind Speed for an Self-Contained Power Assembly of a Traction SubstationMatrenin, P. V.; Khalyasmaa, A. I.; Rusina, A. G.; Eroshenko, S. A.; Papkova, N. A.; Sekatski, D. А.
2022Prediction of Sandstone Dilatancy Point in Different Water Contents Using Infrared Radiation Characteristic: Experimental and Machine Learning ApproachesMa, L.; Khan, N. M.; Cao, K.; Rehman, H.; Salman, S.; Rehman, F. U.
2021A Proposed ANN-Based Acceleration Control Scheme for Soft Starting Induction MotorMenaem, A. A.; Elgamal, M.; Abdel-Aty, A. -H.; Mahmoud, E. E.; Chen, Z.; Hassan, M. A.