Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/118321
Название: | Modeling the influence of the composition of refractory elements on the heat resistance of nickel alloys by a deep learning artificial neural network |
Авторы: | Tarasov, D. A. Milder, O. B. Tiagunov, A. G. |
Дата публикации: | 2022 |
Издатель: | John Wiley and Sons Ltd |
Библиографическое описание: | Tarasov D. A. Modeling the influence of the composition of refractory elements on the heat resistance of nickel alloys by a deep learning artificial neural network / D. A. Tarasov, O. B. Milder, A. G. Tiagunov // Mathematical Methods in the Applied Sciences. — 2022. — Vol. 45. — Iss. 15. — P. 8809-8818. |
Аннотация: | Nickel alloys are widely used in the manufacture of gas turbine parts. The alloys show resistance to mechanical and chemical degradation under prolonged loads and high temperatures. The properties of an alloy are determined by its composition and are subject to careful modeling. A set of basic refractory elements makes a special contribution to the parameters of the alloy. One of the main mechanical properties of the alloys is the high-temperature tensile strength. Determining the influence of certain elements on certain properties of an alloy is a complex scientific and engineering problem that affects the time and cost of developing new materials. Simulation is a great chance to cut costs. In this article, we predict high temperature strength based on the composition of refractory elements in alloys using a specially designed deep learning artificial neural network. We build the model based on prior knowledge of alloy composition, information on the role of alloying elements, type of crystallization, test temperature and time, and tensile strength. Successful simulation results show the applicability of this method in practice. © 2021 John Wiley & Sons, Ltd. |
Ключевые слова: | DEEP LEARNING HEAT RESISTANCE MODELING NICKEL ALLOYS RUPTURE STRENGTH ALLOYING ELEMENTS COST ENGINEERING DEEP NEURAL NETWORKS HEAT RESISTANCE HIGH STRENGTH ALLOYS NEURAL NETWORKS NICKEL ALLOYS REFRACTORY ALLOYS TENSILE STRENGTH ALLOY COMPOSITIONS BASIC REFRACTORIES CHEMICAL DEGRADATION ENGINEERING PROBLEMS HIGH TEMPERATURE STRENGTH HIGH-TEMPERATURE TENSILE STRENGTHS REFRACTORY ELEMENTS TEST TEMPERATURES DEEP LEARNING |
URI: | http://elar.urfu.ru/handle/10995/118321 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85106237156 |
Идентификатор WOS: | 000653157100001 |
Идентификатор PURE: | 30896473 |
ISSN: | 1704214 |
DOI: | 10.1002/mma.7524 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85106237156.pdf | 1,48 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.