Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118321
Название: Modeling the influence of the composition of refractory elements on the heat resistance of nickel alloys by a deep learning artificial neural network
Авторы: Tarasov, D. A.
Milder, O. B.
Tiagunov, A. G.
Дата публикации: 2022
Издатель: John Wiley and Sons Ltd
Библиографическое описание: Tarasov D. A. Modeling the influence of the composition of refractory elements on the heat resistance of nickel alloys by a deep learning artificial neural network / D. A. Tarasov, O. B. Milder, A. G. Tiagunov // Mathematical Methods in the Applied Sciences. — 2022. — Vol. 45. — Iss. 15. — P. 8809-8818.
Аннотация: Nickel alloys are widely used in the manufacture of gas turbine parts. The alloys show resistance to mechanical and chemical degradation under prolonged loads and high temperatures. The properties of an alloy are determined by its composition and are subject to careful modeling. A set of basic refractory elements makes a special contribution to the parameters of the alloy. One of the main mechanical properties of the alloys is the high-temperature tensile strength. Determining the influence of certain elements on certain properties of an alloy is a complex scientific and engineering problem that affects the time and cost of developing new materials. Simulation is a great chance to cut costs. In this article, we predict high temperature strength based on the composition of refractory elements in alloys using a specially designed deep learning artificial neural network. We build the model based on prior knowledge of alloy composition, information on the role of alloying elements, type of crystallization, test temperature and time, and tensile strength. Successful simulation results show the applicability of this method in practice. © 2021 John Wiley & Sons, Ltd.
Ключевые слова: DEEP LEARNING
HEAT RESISTANCE
MODELING
NICKEL ALLOYS
RUPTURE STRENGTH
ALLOYING ELEMENTS
COST ENGINEERING
DEEP NEURAL NETWORKS
HEAT RESISTANCE
HIGH STRENGTH ALLOYS
NEURAL NETWORKS
NICKEL ALLOYS
REFRACTORY ALLOYS
TENSILE STRENGTH
ALLOY COMPOSITIONS
BASIC REFRACTORIES
CHEMICAL DEGRADATION
ENGINEERING PROBLEMS
HIGH TEMPERATURE STRENGTH
HIGH-TEMPERATURE TENSILE STRENGTHS
REFRACTORY ELEMENTS
TEST TEMPERATURES
DEEP LEARNING
URI: http://elar.urfu.ru/handle/10995/118321
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85106237156
Идентификатор WOS: 000653157100001
Идентификатор PURE: 30896473
ISSN: 1704214
DOI: 10.1002/mma.7524
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85106237156.pdf1,48 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.