Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102849
Название: Generation of echocardiographic 2D images of the heart using cGAN
Авторы: Zyuzin, V.
Komleva, J.
Porshnev, S.
Дата публикации: 2021
Издатель: IOP Publishing Ltd
Библиографическое описание: Zyuzin V. Generation of echocardiographic 2D images of the heart using cGAN / V. Zyuzin, J. Komleva, S. Porshnev. — DOI 10.1088/1742-6596/1727/1/012013 // Journal of Physics: Conference Series. — 2021. — Vol. 1727. — Iss. 1. — 012013.
Аннотация: One of the most significant tasks of echocardiography is the automatic delineation of the cardiac structures from 2D echocardiographic images. Over the past decades, the automation of this taskhas been the subject of intense research. One of the most effective approaches is based on the deepconvolutional neural networks. Nonetheless, it is necessary to use echocardiogram frames of the cardiac muscle, which show the boundaries of the cardiac structures labeled/annotated by experts/cardiologists to train it. However, the number of databases containing the necessary information is relatively small. Therefore, generated echocardiogram frames are used to increase the amount of training samples. This process is based on the ultrasound images of the heart, annotated by experts. The article proposes an improved method for generating echocardiograms using a generative adversarial neural network (GAN) with a patch-based conditional discriminator. It has been demonstrated that it is possible to improve the quality of generated echocardiogram frames in both two and four chamber views (AP4C, AP2C) using the masks of cardiac segmentation with sub-pixel convolution layer (pixel shuffle). It is demonstrated that the proposed approach makes it possible to generate ultrasound images, the structure of which corresponds to the specified segmentation masks. It is expected that this method will improve the accuracy of solving the direct problem of automatic segmentation of the left ventricle. © Published under licence by IOP Publishing Ltd.
Ключевые слова: BIG DATA
ECHOCARDIOGRAPHY
HEART
MUSCLE
NEURAL NETWORKS
PIXELS
ULTRASONICS
AUTOMATIC SEGMENTATIONS
CARDIAC SEGMENTATION
CARDIAC STRUCTURE
DIRECT PROBLEMS
ECHOCARDIOGRAPHIC IMAGES
EFFECTIVE APPROACHES
SEGMENTATION MASKS
ULTRASOUND IMAGES
IMAGE SEGMENTATION
URI: http://elar.urfu.ru/handle/10995/102849
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85101711342
Идентификатор PURE: 21021844
6829cc0f-bf8c-4f03-a4db-e2077fc6ea5c
ISSN: 17426588
DOI: 10.1088/1742-6596/1727/1/012013
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85101711342.pdf857,01 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.