Browsing by Subject MACHINE LEARNING

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
or enter first few letters:  
Showing results 1 to 20 of 136  next >
Issue DateTitleAuthor(s)
2022Advanced Analysis of Electroretinograms Based on Wavelet Scalogram ProcessingZhdanov, A.; Dolganov, A.; Zanca, D.; Borisov, V.; Ronkin, M.
2020Application of methods of machine learning to forecasting the motion of stock indicesLokshtein, D.; Kovaleva, A.G.; Локштейн, Д. А.; Ковалева, А. Г.
2020Applications of artificial intelligenceVolozhanin, S. S.; Воложанин, С. С.
2020An approach to unification of application programming interfaces of gaming platforms for artificial intelligenceVesnina, A. A.; Веснина, А. А.
2019An Approach to Unification of Application Programming Interfaces of Gaming Platforms for Artificial IntelligencePonomareva, O.; Vesnin, D.; Vesnina, A.
2020Artificial intelligenceVotentsev, A. S.; Вотенцев, А. С.
2021Artificial intelligence revolutionVotentsev, A. S.; Вотенцев, А. С.
2022Automating Historical Source TranscriptionThorvaldsen, G.
2021Basic methods of malware analysis by deep neural networksUlyanikhin, E. I.; Ульянихин, Е. И.
2023Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapyDokuchaev, A.; Chumarnaya, T.; Bazhutina, A.; Khamzin, S.; Lebedeva, V.; Lyubimtseva, T.; Zubarev, S.; Lebedev, D.; Solovyova, O.
2019Data analysis tools in pythonCherkashin, A. V.; Anchugova, O. V.; Черкашин, А. В.; Анчугова, О. В.
2023Data-Driven Machine Learning Methods for Nontechnical Losses of Electrical Energy Detection: A State-of-the-Art ReviewPazderin, A.; Kamalov, F.; Gubin, P. Y.; Safaraliev, M.; Samoylenko, V.; Mukhlynin, N.; Odinaev, I.; Zicmane, I.
2018Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric-Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine LearningNeumayer, S. M.; Collins, L.; Vasudevan, R.; Smith, C.; Somnath, S.; Shur, V. Y.; Jesse, S.; Kholkin, A. L.; Kalinin, S. V.; Rodriguez, B. J.; Шур, В. Я.
2021Deepfake: эволюция фейка как угроза медиасредеЧертов, Д. А.; Chertov, D. A.
2019DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regionsLiu, G.; Liu, G. -J.; Tan, J. -X.; Lin, H.
2020Effects of Lead Position, Cardiac Rhythm Variation and Drug-induced QT Prolongation on Performance of Machine Learning Methods for ECG ProcessingBogdanov, M.; Baigildin, S.; Fabarisova, A.; Ushenin, K.; Solovyova, O.
2021Efficiency of the algorithms for forecasting the properties of materials by their molecular compositionIgoshina, E. D.; Игошина, Е. Д.
2023Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual TransformerKulyabin, M.; Zhdanov, A.; Dolganov, A.; Ronkin, M.; Borisov, V.; Maier, A.
2020Evaluation of effectiveness of algorithms for detection of suspicious bank transactionsIgoshina, E. D.; Игошина, Е. Д.
2023Evaluation of the effectiveness of the decision support algorithm for physicians in retinal dystrophy using machine learning methodsZhdanov, A. E.; Dolganov, A. Yu.; Zanca, D.; Borisov, V. I.; Luchian, E.; Dorosinsky, L. G.