Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141715
Название: Bulk Power Systems Emergency Control Based on Machine Learning Algorithms and Phasor Measurement Units Data: A State-of-the-Art Review
Авторы: Senyuk, M.
Beryozkina, S.
Safaraliev, M.
Pazderin, A.
Odinaev, I.
Klassen, V.
Savosina, A.
Kamalov, F.
Дата публикации: 2024
Издатель: Multidisciplinary Digital Publishing Institute (MDPI)
Библиографическое описание: Senyuk, M., Beryozkina, S., Safaraliev, M., Pazderin, A., Odinaev, I., Klassen, V., Savosina, A., & Kamalov, F. (2024). Bulk Power Systems Emergency Control Based on Machine Learning Algorithms and Phasor Measurement Units Data: A State-of-the-Art Review. Energies, 17(4), [764]. https://doi.org/10.3390/en17040764
Аннотация: Modern electrical power systems are characterized by a high rate of transient processes, the use of digital monitoring and control systems, and the accumulation of a large amount of technological information. The active integration of renewable energy sources contributes to reducing the inertia of power systems and changing the nature of transient processes. As a result, the effectiveness of emergency control systems decreases. Traditional emergency control systems operate based on the numerical analysis of power system dynamic models. This allows for finding the optimal set of preventive commands (solutions) in the form of disconnections of generating units, consumers, transmission lines, and other primary grid equipment. Thus, the steady-state or transient stability of a power system is provided. After the active integration of renewable sources into power systems, traditional emergency control algorithms became ineffective due to the time delay in finding the optimal set of control actions. Currently, machine learning algorithms are being developed that provide high performance and adaptability. This paper contains a meta-analysis of modern emergency control algorithms for power systems based on machine learning and synchronized phasor measurement data. It describes algorithms for determining disturbances in the power system, selecting control actions to maintain transient and steady-state stability, stability in voltage level, and limiting frequency. This study examines 53 studies piled on the development of a methodology for analyzing the stability of power systems based on ML algorithms. The analysis of the research is carried out in terms of accuracy, computational latency, and data used in training and testing. The most frequently used textual mathematical models of power systems are determined, and the most suitable ML algorithms for use in the operational control circuit of power systems in real time are determined. This paper also provides an analysis of the advantages and disadvantages of existing algorithms, as well as identifies areas for further research. © 2024 by the authors.
Ключевые слова: BIG DATA
BULK POWER SYSTEM
CONTROL ACTION
DIGITAL SIGNAL PROCESSING
EMERGENCY CONTROL
MACHINE LEARNING
PHASOR MEASUREMENT UNITS
POWER SYSTEM
SMALL SIGNAL STABILITY
SYNCHRONOUS GENERATOR
TRANSIENT STABILITY
WIDE AREA PROTECTION SYSTEM
BIG DATA
DIGITAL SIGNAL PROCESSING
ELECTRIC EQUIPMENT PROTECTION
ELECTRIC POWER SYSTEM CONTROL
ELECTRIC POWER SYSTEM PROTECTION
ELECTRIC POWER SYSTEM STABILITY
ELECTRIC POWER TRANSMISSION
LEARNING ALGORITHMS
MACHINE LEARNING
PHASE MEASUREMENT
POWER QUALITY
REAL TIME SYSTEMS
RENEWABLE ENERGY
SMART POWER GRIDS
SYNCHRONOUS GENERATORS
TRANSIENTS
BULK POWER SYSTEMS
CONTROL ACTIONS
EMERGENCY CONTROL
MACHINE LEARNING ALGORITHMS
MACHINE-LEARNING
ON-MACHINES
POWER
POWER SYSTEM
SMALL SIGNAL STABILITY
WIDE AREA PROTECTION SYSTEMS
PHASOR MEASUREMENT UNITS
URI: http://elar.urfu.ru/handle/10995/141715
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85185703578
Идентификатор WOS: 001172007800001
Идентификатор PURE: 53172634
ISSN: 1996-1073
DOI: 10.3390/en17040764
Сведения о поддержке: Russian Science Foundation, RSF, (23-79-01024); Russian Science Foundation, RSF
The reported study was supported by Russian Science Foundation, research project № 23-79-01024.
Карточка проекта РНФ: 23-79-01024
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85185703578.pdf2,08 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.