Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141715
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSenyuk, M.en
dc.contributor.authorBeryozkina, S.en
dc.contributor.authorSafaraliev, M.en
dc.contributor.authorPazderin, A.en
dc.contributor.authorOdinaev, I.en
dc.contributor.authorKlassen, V.en
dc.contributor.authorSavosina, A.en
dc.contributor.authorKamalov, F.en
dc.date.accessioned2025-02-25T11:02:22Z-
dc.date.available2025-02-25T11:02:22Z-
dc.date.issued2024-
dc.identifier.citationSenyuk, M., Beryozkina, S., Safaraliev, M., Pazderin, A., Odinaev, I., Klassen, V., Savosina, A., & Kamalov, F. (2024). Bulk Power Systems Emergency Control Based on Machine Learning Algorithms and Phasor Measurement Units Data: A State-of-the-Art Review. Energies, 17(4), [764]. https://doi.org/10.3390/en17040764apa_pure
dc.identifier.issn1996-1073-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85185703578&doi=10.3390%2fen17040764&partnerID=40&md5=368845012073d4c943520b9cd03889641
dc.identifier.otherhttps://www.mdpi.com/1996-1073/17/4/764/pdf?version=1707182274pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141715-
dc.description.abstractModern electrical power systems are characterized by a high rate of transient processes, the use of digital monitoring and control systems, and the accumulation of a large amount of technological information. The active integration of renewable energy sources contributes to reducing the inertia of power systems and changing the nature of transient processes. As a result, the effectiveness of emergency control systems decreases. Traditional emergency control systems operate based on the numerical analysis of power system dynamic models. This allows for finding the optimal set of preventive commands (solutions) in the form of disconnections of generating units, consumers, transmission lines, and other primary grid equipment. Thus, the steady-state or transient stability of a power system is provided. After the active integration of renewable sources into power systems, traditional emergency control algorithms became ineffective due to the time delay in finding the optimal set of control actions. Currently, machine learning algorithms are being developed that provide high performance and adaptability. This paper contains a meta-analysis of modern emergency control algorithms for power systems based on machine learning and synchronized phasor measurement data. It describes algorithms for determining disturbances in the power system, selecting control actions to maintain transient and steady-state stability, stability in voltage level, and limiting frequency. This study examines 53 studies piled on the development of a methodology for analyzing the stability of power systems based on ML algorithms. The analysis of the research is carried out in terms of accuracy, computational latency, and data used in training and testing. The most frequently used textual mathematical models of power systems are determined, and the most suitable ML algorithms for use in the operational control circuit of power systems in real time are determined. This paper also provides an analysis of the advantages and disadvantages of existing algorithms, as well as identifies areas for further research. © 2024 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF, (23-79-01024); Russian Science Foundation, RSFen
dc.description.sponsorshipThe reported study was supported by Russian Science Foundation, research project № 23-79-01024.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceEnergies2
dc.sourceEnergiesen
dc.subjectBIG DATAen
dc.subjectBULK POWER SYSTEMen
dc.subjectCONTROL ACTIONen
dc.subjectDIGITAL SIGNAL PROCESSINGen
dc.subjectEMERGENCY CONTROLen
dc.subjectMACHINE LEARNINGen
dc.subjectPHASOR MEASUREMENT UNITSen
dc.subjectPOWER SYSTEMen
dc.subjectSMALL SIGNAL STABILITYen
dc.subjectSYNCHRONOUS GENERATORen
dc.subjectTRANSIENT STABILITYen
dc.subjectWIDE AREA PROTECTION SYSTEMen
dc.subjectBIG DATAen
dc.subjectDIGITAL SIGNAL PROCESSINGen
dc.subjectELECTRIC EQUIPMENT PROTECTIONen
dc.subjectELECTRIC POWER SYSTEM CONTROLen
dc.subjectELECTRIC POWER SYSTEM PROTECTIONen
dc.subjectELECTRIC POWER SYSTEM STABILITYen
dc.subjectELECTRIC POWER TRANSMISSIONen
dc.subjectLEARNING ALGORITHMSen
dc.subjectMACHINE LEARNINGen
dc.subjectPHASE MEASUREMENTen
dc.subjectPOWER QUALITYen
dc.subjectREAL TIME SYSTEMSen
dc.subjectRENEWABLE ENERGYen
dc.subjectSMART POWER GRIDSen
dc.subjectSYNCHRONOUS GENERATORSen
dc.subjectTRANSIENTSen
dc.subjectBULK POWER SYSTEMSen
dc.subjectCONTROL ACTIONSen
dc.subjectEMERGENCY CONTROLen
dc.subjectMACHINE LEARNING ALGORITHMSen
dc.subjectMACHINE-LEARNINGen
dc.subjectON-MACHINESen
dc.subjectPOWERen
dc.subjectPOWER SYSTEMen
dc.subjectSMALL SIGNAL STABILITYen
dc.subjectWIDE AREA PROTECTION SYSTEMSen
dc.subjectPHASOR MEASUREMENT UNITSen
dc.titleBulk Power Systems Emergency Control Based on Machine Learning Algorithms and Phasor Measurement Units Data: A State-of-the-Art Reviewen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/en17040764-
dc.identifier.scopus85185703578-
local.contributor.employeeSenyuk M., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeBeryozkina S., College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwaiten
local.contributor.employeeSafaraliev M., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeePazderin A., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeOdinaev I., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeKlassen V., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSavosina A., Department of Electric Drive and Automation of Industrial Installations, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeKamalov F., Department of Electrical Engineering, Canadian University Dubai, Dubai, 117781, United Arab Emiratesen
local.issue4-
local.volume17-
dc.identifier.wos001172007800001-
local.contributor.departmentDepartment of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentCollege of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwaiten
local.contributor.departmentDepartment of Electric Drive and Automation of Industrial Installations, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Electrical Engineering, Canadian University Dubai, Dubai, 117781, United Arab Emiratesen
local.identifier.pure53172634-
local.description.order764
local.identifier.eid2-s2.0-85185703578-
local.fund.rsf23-79-01024
local.identifier.wosWOS:001172007800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85185703578.pdf2,08 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.