Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/99846
Title: Data-driven approaches to detecting sports betting irregularities
Authors: Zeikos, Amanuel Mehretab
Martinez, Jorge
Al-lami, Mustafa Ali
Issue Date: 2021
Publisher: УрФУ
Citation: Zeikos Amanuel Mehretab. Data-driven approaches to detecting sports betting irregularities / Amanuel Mehretab Zeikos, Jorge Martinez, Mustafa Ali Al-lami. — Текст : электронный // Весенние дни науки : сборник докладов Международной конференции студентов и молодых ученых (Екатеринбург, 22–24 апреля 2021 г.). — Екатеринбург : УрФУ, 2021. — C. 339-343.
Abstract: Today, people can place their bets from the commodity of their couches by using their cell phones. This means a person can technically place a bet wherever they are and whenever they want. When you have access to a betting website you can bet on any sport event you can imagine every day and all at times of the day. According to the blog “A Football report” the sports betting industry is worth 3 trillion dollars. For this project, we are going to focus on the most popular sport in the world, Football.
Keywords: ANOMALY DETECTION
BETTING
SPORTS
DATA-DRIVENЮ
URI: http://elar.urfu.ru/handle/10995/99846
Conference name: Международная конференция студентов и молодых ученых «Весенние дни науки»
Conference date: 22.04.2021-24.04.2021
ISBN: 978-5-91256-519-9
Origin: Весенние дни науки. — Екатеринбург, 2021
Appears in Collections:Конференции, семинары, сборники

Files in This Item:
File Description SizeFormat 
978-5-91256-519-9_2021_065.pdf497,41 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.