Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/99845
Title: Multi-focal image fusion technique using convolutional neural network
Authors: Al-lami, Mustafa Ali
Issue Date: 2021
Publisher: УрФУ
Citation: Al-lami Mustafa Ali. Multi-focal image fusion technique using convolutional neural network / Mustafa Ali Al-lami. — Текст : электронный // Весенние дни науки : сборник докладов Международной конференции студентов и молодых ученых (Екатеринбург, 22–24 апреля 2021 г.). — Екатеринбург : УрФУ, 2021. — C. 336-338.
Abstract: In this paper, a solution to the problems faced by different images such as multifocal and medical images is found through a simulation process using brain magnetic resonance imaging (MRI) to make a fuse based on previously approved fusion techniques such as convolutional neural networks (CNN). An algorithm is developed with the introduction of the Euclidean distance algorithm as part of the processes to make the implementation faster and more efficient than the traditional CNN. The objective fusion metrics that are commonly used are implementing to make a quantitative evaluation. The proposed system consists of three main phases which are, pre-processing phase, features extraction phase, and classification phase. The preprocessing phase is used to enhance the images by using the techniques of digital image processing. Feature extraction phase is used to get features from medical images based on the concept of Histogram of Orientation Gradient (HOG) technique feature that applied to the medical image after conversion using mean filter, adaptive filter, Discrete Wavelet Transform (DWT), k-means clustering Singular Value Decomposition (k-SVD).
Keywords: MAGNETIC RESONANCE IMAGING
HISTOGRAM OF ORIENTATION GRADIENT
DISCRETE WAVELET TRANSFORM
MEDICAL IMAGES
URI: http://elar.urfu.ru/handle/10995/99845
Conference name: Международная конференция студентов и молодых ученых «Весенние дни науки»
Conference date: 22.04.2021-24.04.2021
ISBN: 978-5-91256-519-9
Origin: Весенние дни науки. — Екатеринбург, 2021
Appears in Collections:Конференции, семинары, сборники

Files in This Item:
File Description SizeFormat 
978-5-91256-519-9_2021_064.pdf292,39 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.