Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/94233
Название: Developing manufacturing execution system with predictive analysis
Авторы: Potekhin, V. V.
Bahrami, A. H.
Katalinič, B.
Дата публикации: 2020
Издатель: IOP Publishing Ltd
Библиографическое описание: Potekhin V. V. Developing manufacturing execution system with predictive analysis / V. V. Potekhin, A. H. Bahrami, B. Katalinič. — DOI 10.1088/1757-899X/966/1/012117 // IOP Conference Series: Materials Science and Engineering . — 2020. — Vol. 966. — 12117.
Аннотация: Digitalisation is currently developing in many sectors of the economy. The success of a manufacturing enterprise requires a transition to digital control of production and business processes, to the greatest extent possible without human intervention using artificial intelligence technologies. This research applies a Manufacturing Execution System (MES) with Predictive Analysis to an automatic production line (Chemical Line) which contains sensors, actuators and pumps controlled by four Programmable Logic Controllers, linked together, and being monitored through a Supervisory Control and Data Acquisition system. The production line composed of four different subsystems, responsible for filtration to bottling the chemical product. This paper tries to join the MES system with Artificial Neural Networks (ANN) in order to not only monitor the system but having predictive analysis to plan the future. In such way we will take advantage of the benefits of the ANN, such as Long-Short Term Memory architectures. The experimental data will be compared with other usual platforms, such as the Master SCADA itself, through the course of this research. © Published under licence by IOP Publishing Ltd.
URI: http://elar.urfu.ru/handle/10995/94233
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 15th International Conference on Industrial Manufacturing and Metallurgy, ICIMM 2020
Дата конференции/семинара: 18.06.2020-19.06.2020
Идентификатор РИНЦ: 85097088531
ISSN: 1757-8981
DOI: 10.1088/1757-899X/966/1/012117
Источники: 15th International Conference on Industrial Manufacturing and Metallurgy, ICIMM 2020
Располагается в коллекциях:Междисциплинарные конференции, семинары, сборники

Файлы этого ресурса:
Файл Описание РазмерФормат 
966_1_012117.pdf333,96 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.