Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/94233
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPotekhin, V. V.en
dc.contributor.authorBahrami, A. H.en
dc.contributor.authorKatalinič, B.en
dc.date.accessioned2020-12-18T06:31:47Z-
dc.date.available2020-12-18T06:31:47Z-
dc.date.issued2020-
dc.identifier.citationPotekhin V. V. Developing manufacturing execution system with predictive analysis / V. V. Potekhin, A. H. Bahrami, B. Katalinič. — DOI 10.1088/1757-899X/966/1/012117 // IOP Conference Series: Materials Science and Engineering . — 2020. — Vol. 966. — 12117.en
dc.identifier.issn1757-8981-
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85097088531m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/94233-
dc.description.abstractDigitalisation is currently developing in many sectors of the economy. The success of a manufacturing enterprise requires a transition to digital control of production and business processes, to the greatest extent possible without human intervention using artificial intelligence technologies. This research applies a Manufacturing Execution System (MES) with Predictive Analysis to an automatic production line (Chemical Line) which contains sensors, actuators and pumps controlled by four Programmable Logic Controllers, linked together, and being monitored through a Supervisory Control and Data Acquisition system. The production line composed of four different subsystems, responsible for filtration to bottling the chemical product. This paper tries to join the MES system with Artificial Neural Networks (ANN) in order to not only monitor the system but having predictive analysis to plan the future. In such way we will take advantage of the benefits of the ANN, such as Long-Short Term Memory architectures. The experimental data will be compared with other usual platforms, such as the Master SCADA itself, through the course of this research. © Published under licence by IOP Publishing Ltd.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherIOP Publishing Ltden
dc.relation.ispartof15th International Conference on Industrial Manufacturing and Metallurgy, ICIMM 2020en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIOP Conference Series: Materials Science and Engineeringen
dc.titleDeveloping manufacturing execution system with predictive analysisen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.conference.name15th International Conference on Industrial Manufacturing and Metallurgy, ICIMM 2020en
dc.conference.date18.06.2020-19.06.2020-
dc.identifier.rsi85097088531
dc.identifier.doi10.1088/1757-899X/966/1/012117-
local.volume966-
local.description.order12117-
local.identifier.eid2-s2.0-85097088531-
Располагается в коллекциях:Междисциплинарные конференции, семинары, сборники

Файлы этого ресурса:
Файл Описание РазмерФормат 
966_1_012117.pdf333,96 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.