Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93097
Title: Local Extensions with Imperfect Residue Field
Authors: Lbekkouri, A.
Issue Date: 2019
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Lbekkouri A. Local Extensions with Imperfect Residue Field / A. Lbekkouri. — DOI 10.15826/umj.2019.2.004. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 31-54.
Abstract: The paper deals with some aspects of general local fields and tries to elucidate some obscure facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability, prosolvability and procyclicity. Furthermore, we give a result that makes "some'' generalization to Abhyankar's Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed, presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning Hilbert's theory.
Keywords: INERTIA GROUP
ABHYANKAR'S LEMMA
IMPERFECT RESIDUE FIELD
WEAKLY UNRAMIFIED
SOLVABILITY
MONOGENITY
URI: http://elar.urfu.ru/handle/10995/93097
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2019.2.004
Origin: Ural Mathematical Journal. 2019. Volume 5. № 2
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2019_5_2_31-54.pdf298,86 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons