Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93097
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLbekkouri, A.en
dc.date.accessioned2020-10-30T12:54:03Z-
dc.date.available2020-10-30T12:54:03Z-
dc.date.issued2019-
dc.identifier.citationLbekkouri A. Local Extensions with Imperfect Residue Field / A. Lbekkouri. — DOI 10.15826/umj.2019.2.004. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 31-54.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/93097-
dc.description.abstractThe paper deals with some aspects of general local fields and tries to elucidate some obscure facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability, prosolvability and procyclicity. Furthermore, we give a result that makes "some'' generalization to Abhyankar's Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed, presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning Hilbert's theory.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2019. Volume 5. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectINERTIA GROUPen
dc.subjectABHYANKAR'S LEMMAen
dc.subjectIMPERFECT RESIDUE FIELDen
dc.subjectWEAKLY UNRAMIFIEDen
dc.subjectSOLVABILITYen
dc.subjectMONOGENITYen
dc.titleLocal Extensions with Imperfect Residue Fielden
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2019.2.004-
local.description.firstpage31-
local.description.lastpage54-
local.issue2-
local.volume5-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_2_31-54.pdf298,86 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons