Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://hdl.handle.net/10995/93083
Название: Eestimates of Best Approximations of Functions with Logarithmic Smoothness in the Lorentz Space with Anisotropic Norm
Авторы: Akishev, G.
Дата публикации: 2020
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Akishev G. Eestimates of Best Approximations of Functions with Logarithmic Smoothness in the Lorentz Space with Anisotropic Norm / G. Akishev. — DOI 10.15826/umj.2020.1.002. — Text : electronic // Ural Mathematical Journal. — 2020. — Volume 6. — № 1. — P. 16-29.
Аннотация: In this paper, we consider the anisotropic Lorentz space L∗p¯,θ¯(Im) of periodic functions of m variables. The Besov space B(0,α,τ)p¯,θ¯ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class B(0,α,τ)p¯,θ¯ by trigonometric polynomials under different relations between the parameters p¯,θ¯, and τ. The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function f∈L∗p¯,θ¯(1)(Im) to belong to the space L∗p¯,θ(2)(Im) in the case 1<θ2<θ(1)j,$$j=1,…,m, in terms of the best approximation and prove its unimprovability on the class Eλp¯,θ¯={f∈L∗p¯,θ¯(Im):En(f)p¯,θ¯≤λn, n=0,1,…}, where En(f)p¯,θ¯ is the best approximation of the function f∈L∗p¯,θ¯(Im) by trigonometric polynomials of order n in each variable xj, j=1,…,m, and λ={λn} is a sequence of positive numbers λn↓0 as n→+∞. In the second section, we establish order-exact estimates for the best approximation of functions from the class B(0,α,τ)p¯,θ¯(1) in the space L∗p¯,θ(2)(Im).
Ключевые слова: LORENTZ SPACE
URI: http://hdl.handle.net/10995/93083
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2020.1.002
Сведения о поддержке: This work was supported by the Competitiveness Enhancement Program of the Ural Federal University (Enactment of the Government of the Russian Federation of March 16, 2013 no. 211, agreement no. 02.A03.21.0006 of August 27, 2013).
Источники: Ural Mathematical Journal. 2020. Volume 6. № 1
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2020_6_1_16-29.pdf194,07 kBAdobe PDFПросмотреть/Открыть

Лицензия на ресурс: Лицензия Creative Commons Creative Commons