Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/93077
Title: On the Chernous'ko Time-Optimal Problem for the Equation of Heat Conductivity in a Rod
Authors: Azamov, A. A.
Bakhramov, J. A.
Akhmedov, O. S.
Issue Date: 2019
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Azamov A. A. On the Chernous'ko Time-Optimal Problem for the Equation of Heat Conductivity in a Rod / A. A. Azamov, J. A. Bakhramov, O. S. Akhmedov. — DOI 10.15826/umj.2019.1.002. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 1. — P. 13-23.
Abstract: The time-optimal problem for the controllable equation of heat conductivity in a rod is considered. By means of the Fourier expansion, the problem reduced to a countable system of one-dimensional control systems with a combined constraint joining control parameters in one relation. In order to improve the time of a suboptimal control constructed by F.L. Chernous'ko, a method of grouping coupled terms of the Fourier expansion of a control function is applied, and a synthesis of the improved suboptimal control is obtained in an explicit form.
Keywords: HEAT EQUATION
TIME-OPTIMAL PROBLEM
PONTRYAGIN MAXIMUM PRINCIPLE
SUBOPTIMAL CONTROL
SYNTHESIS OF CONTROL
URI: http://elar.urfu.ru/handle/10995/93077
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2019.1.002
metadata.dc.description.sponsorship: This work was supported by a grant from the Ministry of Innovative Development of the Republic of Uzbekistan (Project No. OT- 4-84).
Origin: Ural Mathematical Journal. 2019. Volume 5. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2019_5_1_13-23.pdf222,29 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons