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Abstract: The time-optimal problem for the controllable equation of heat conductivity in a rod is considered.
By means of the Fourier expansion, the problem reduced to a countable system of one-dimensional control
systems with a combined constraint joining control parameters in one relation. In order to improve the time
of a suboptimal control constructed by F.L. Chernous’ko, a method of grouping coupled terms of the Fourier
expansion of a control function is applied, and a synthesis of the improved suboptimal control is obtained in an
explicit form.
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Introduction

It is known that a time-optimal problem occupied a very important place in the foundation
and development of optimal control theory. Even for simple non-trivial cases, the problem required
working-out new approaches and lead after all to Pontryagin’s maximum principle [3, 10, 30].
Despite 70 years of development, the solution of concrete non-trivial examples of time-optimal
control still needs considerable effort [2, 4, 19]. The problem becomes even more difficult when a
control system is described by a partial differential equation [11, 24, 25, 34], particularly, for the
heat conductivity equation [12, 22, 26, 29, 35, 36]. In [1], the correctness of parabolic equations
for heat propagation is discussed and for that purpose, a parabolic equation with time delay is
considered.

Here, the maximum principle can be formally written out as well, but it loses its effectiveness
as compared with a finite-dimensional case or on cases when the time interval is fixed [2, 9, 18, 25,
32, 33]. Therefore, Chernous’ko suggested [13] another approach based on the Fourier expansion
that allowed him to reduce the problem to an infinite system of one-dimensional problems whose
control parameters are connected by a condition in the min-max form (see below (1.4)) generating
a closed convex control set in a Hilbert space. Unfortunately, to deal with such a constraint is
quite difficult (about other kinds of constraints see [17]). In order to overcome this complexity,
the mentioned constraint was replaced [13] by an infinite system of separated conditions for scalar
control parameters that can be interpreted as if one took Hilbert’s brick inscribed into the control
set. As a result, this approach made it possible to construct a suboptimal control and to give an
explicit upper estimation for an optimal time. In [5], a co-Hilbert’s brick inscribed into the control
set was considered, and an improved suboptimal control function was constructed. In the present
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paper, we suggest another way for constructing a suboptimal control function in the case of the
heat conductivity equation in a rod.

1. Preliminaries

As it was noted above, Chernous’ko considered the time-optimal problem for an evolutional
equation

∂u(t, x)

∂t
= A[u(·, ·)](t, x) + v(t, x) (1.1)

with the initial and boundary conditions

u(0, x) = u0(x), Mu(t, s) = u∗(t, s), (1.2)

where A is a uniformly elliptic differential operator, t ≥ 0, x ∈ D, D is a regular domain with
Lyapunov boundary Γ, s ∈ Γ, and M is a boundary operator [13].

The constraint on the control function in problem (1.1), (1.2) is bounded in the norm of the
space L∞; i.e. |v(t, x)| ≤ v0 for almost all t and every x ∈ D̄, where v0 is a given positive
number [31]. It is known that, for every control function v(t, x), problem (1.1), (1.2) has a unique
solution u(t, x) [14, 21, 28].

If a solution u(t, x) of problem (1.1), (1.2) satisfies the condition u(T, x) ≡ 0 at some T, T ≥ 0,
then the corresponding control function v(t, x) is called admissible, and the number T is called the
transition time (from the initial state u0(·) into the equilibrium state u(t, x) ≡ 0). Let V be the
class of all admissible controls. Then the quantity T = T [v(·, ·)] will be a functional on V at every
fixed u0(x) and u∗(t, s).

If an admissible control v∗(t, x) satisfies the condition T∗ = T [v∗( · , · )] ≤ T [v( · , · )] for all
v( · , · ) ∈ V, then v∗( · , · ) is called a time-optimal control, and the value T∗ is called optimal
transition time.

The direct application of the Pontryagin maximum principle to problem (1.1), (1.2) is a very
hard task, unlike optimization problems on a finite interval of time (see [4, 8, 15]). For example,
in [25], only theorems on the existence of optimal control and the bang-bang principle are given,
but no specific example of a solution was considered. In monograph [11], the time-optimal problem
when a control parameter participates in boundary conditions was considered [11, Ch. 5, Sect. 1]
and, instead of the necessary conditions, the method of the L-momentum of N.N. Krasovskii [19]
was applied [11, Sect. 2]. In the recently published article [20], Butkovsky’s approach was applied to
the case of a fractional-order diffusion equation. It should be noted that the L-momentum method
only allows one to simplify to some degree the time-optimal problem and rarely gives an explicit
solution. Therefore, the approach suggested by Chernous’ko [13], where the method of expansions
on the system of eigenfunctions of the operator A was used, seems to be more effective. That
helped to reduce considering problem to the infinite system of one-dimensional control problems:

ẏk = −λkyk + vk, yk(0) = yk0, k = 0, 1, 2, . . . . (1.3)

(About solution of systems of this kind, see [16]).
In terms of system (1.3), the condition |v(t, s)| ≤ v0 means that a counting system of the control

parameters vk, k = 0, 1, 2, . . . , should satisfy the combined constraint

max
x∈D̄

∣

∣

∣

∞
∑

k=0

ϕk(x)vk

∣

∣

∣
≤ v0. (1.4)

where ϕk are eigenfunctions of the problem.
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Condition (1.4) defines some closed convex set L in the Hilbert space l2, which is difficult to
deal with. In this connection, it is natural to try to solve the problem of finding a suboptimal
control. (It is essential to note that, if a time interval is fixed, then the method of penalty functions
is enough effective for the construction of a suboptimal control. It would be interesting to apply
this method for the time-interval problem as well [6].) For this purpose, in [13], constraint (1.4)
was replaced by a more rigid system of constraints in the form

|vk| ≤ Uk, k = 0, 1, 2, . . . , (1.5)

where αk = max
x∈D̄

|ϕk(x)|. Wherein, nonnegative numbers Uk should be chosen satisfying the con-

dition
∑α

k=0 αkUk = v0.

Let T∗k be an optimal transition time in the problem

ẏk = −λkyk + vk, yk(0) = y0k, (1.6)

such that yk(T∗k) = 0, k = 0, 1, 2 . . . . In [13], it is shown that the numbers Uk can be chosen so
that all T∗k coincide: T∗k = T̂ for some T̂ . Let v̂k(t) be the sequence of the corresponding optimal
controls. Then T∗ ≤ T̂ and v̂∗(t, x) =

∑∞
k=0 ϕk(x)v∗k(t) may serve as the sought suboptimal control.

A new problem arises here: is it possible to use a more exact reduction of the constraint
than (1.5)? As mentioned above in [5] it was used Hilbert’s co-cube instead of (1.5). Here, we
are going to follow another approach based on a special grouping of terms of (1.5). Effectiveness
of this approach is tightly related to specific properties of eigenfunctions ϕk(·), so here it will be
demonstrated for the operator A = ∂2/∂x2 connected with the process of the heat conductivity in
a rod.

2. A method of grouping terms of the Fourier expansion

Consider the following concretization of problem (1.1), (1.2):







∂u

∂t
=
∂2u

∂x2
+ v(t, x), |v(t, x)| ≤ v0, t ≥ 0, 0 ≤ x ≤ π,

u(0, x) = u0(x), u(t, 0) = 0, u(t, π) = 0.
(2.1)

The system of eigenfunctions ϕk(t) = sin kx, k = 1, 2, . . . , of the operator ∂2/∂x2 forms a
complete orthogonal basis of the space L2[0, π] [21, 28].

Let u(t, x) =
∑∞

k=1 yk sin kx and v(t, x) =
∑∞

k=1 vk sin kx be the Fourier expansions on the
basis {sin kx} . Then the restriction (1.4) takes the form

max
0≤x≤π

∣

∣

∣

∞
∑

k=1

vk sin kx
∣

∣

∣
≤ v0. (2.2)

Let us consider a more rigid restriction

max
0≤x≤π

∑

k∈Q

∣

∣

∣
vk sin kx + v3k sin 3kx

∣

∣

∣
≤ v0 (2.3)

instead of (2.2), thereby replacing the optimal control problem with a suboptimal control problem.

System (1.6) takes the form

ẏk = −k2yk + vk, k ∈ Z+. (2.4)
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Let Q be the set of all positive integers having the form 32pq, where p = 0, 1, 2, . . . , and q is
relatively prime with 3. It is obvious that the set of all positive integers Z+ is the union of the two
disjoint sets Q and 3Q. Then (2.4) can be rewritten in the form

ẏk = −k2yk + vk, ẏ3k = −9k2y3k + v3k, k ∈ Q. (2.5)

After the substitutions

yk =
µk
k2
x1, y3k =

µk
k2
x2, t =

1

k2
τ, vk = µkw

1, v3k = µkw
2,

all systems (2.5) will be reformulated to the following two-dimensional control system:

ẋ1 = −x1 + w1, ẋ2 = −9x2 + w2. (2.6)

Now, following the Chernous’ko way, we replace (2.3) by the even more rigid restriction

max
0≤x≤π

∣

∣w1
k sin kx + w2

k sin 3kx
∣

∣ ≤ 1, k ∈ Q, (2.7)

that implies (2.3) if
∑

k∈Q µk = v0. Thus, we have reduced the infinite dimensional control problem
to the two-dimensional problem.

3. Solution of the auxiliary time-optimal problem on the plane

Let Pk denote the set of all pairs (w1
k, w

2
k) for which (2.7) holds. Setting

P =
{

w = (w1, w2) ∈ R2 : max
0≤t≤π

∣

∣w1 sin t+ w2 sin 3t
∣

∣ ≤ 1
}

,

we have Pk = µ kP. As a result, the considered problem of constructing a suboptimal control reduces
to the concrete problem of time-optimal control for the following two-dimensional system:

ẋ1 = −x1 + w1, ẋ2 = −9x2 + w2, (w1, w2) ∈ P. (3.1)

Obviously, P is a convex and compact set with non-empty interior (i.e., a convex body). Since
P is symmetric with respect to the origin, we may restrict ourselves to considering only the case
w1 ≥ 0. It is more convenient to set sin t = y. Then, by the formula

sin 3t = 3 sin t− 4 sin3 t,

we get

P =
{

w = (w1, w2) ∈ R2 : max
0≤y≤1

∣

∣(w1 + 3w2) y − 4w2 y3
∣

∣ ≤ 1
}

.

Just this transformation lay on the base of the separation Z+ = Q ∪ 3Q.
After elementary calculations, we find that the part of the boundary of the set P lying in the

half-plane w1 ≥ 0 is given by the formula

w1 =

{

w2 + 1 if −1 ≤ w2 < 0.125,

3(
3
√
w2 − w2) if 0.125 ≤ w2 ≤ 1,

while the other part is found by central symmetry (see Fig. 1).
Let us recall that, in the auxiliary problem (3.1), a unique optimal time-control function exists

at each initial point (x10, x
2
0) [7, 23, 27]. The existence follows from the property O ∈ IntP . The
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Figure 1. The straight ray AC is tangent at the point A to the curve AD, which is a part of the boundary
of P .

uniqueness is a consequence of the following feature of P : the vector (1,1), which is orthogonal to
the segment AC, is not an eigenvector of the matrix of system (3.1). Therefore, the optimal control
problem (2.5) coincides with the extremal controls of Pontryagin’s maximum principle [23, 30].

To calculate the latter, we prefer to use the “backward motion” principle. Let T (x10, x
2
0) be a

transition time for the initial point (x10, x
2
0) in the system (3.1). If we set τ = T (x10, x

2
0) − t, then

extremals of Pontryagin’s maximum principle are defined by the system







dx1

dτ
= x1 − w̄1,

dx2

dτ
= 9x2 − w̄2,

dψ1

dτ
= −ψ1,

dψ2

dτ
= −9ψ2.

x(0) = y(0) = 0, ψ1(0) = cos s, ψ2(0) = sin s, −π ≤ s ≤ π.
(3.2)

Since ψ1(τ, s) = e−τ cos s and ψ2(τ, s) = e−9τ sin s, an extremal control w̄(τ, s) should be found
by the Pontryagin’s maximum principle, i.e., from the equation

w̄1(τ, s)e−τ cos s+ w̄2(τ, s)e−9τ sin s = max
w∈P

[w1e−τ cos s+ w2e−9τ sin s]. (3.3)

Equation (3.3) leads to the following construction of the extremal controls.

If ψ(τ, s) lies in the open angle AOB, then obviously w̄(τ, s) = (0, 1). Note that, if s = π/2,
then ψ1(τ, s) ≡ 0. Therefore, w̄(τ, π/2) = (0, 1). Similarly, if s = 0, then ψ2(τ, s) ≡ 0; thus,
w̄(τ, 0) = (2

√
3/3,

√
3/9).

Consider now the dynamics of ψ(τ, s). In the case 0 < s < π/2, the vector ψ(τ, s) lies in
the quarter ψ1 > 0, ψ2 > 0 and turns clockwise. Moreover, its direction tends to the axis of
abscissas OE as τ → +∞. (Similarly, if −π/2 < s < 0, then ψ(τ, s) lies in the quarter ψ1 > 0,
ψ2 < 0 and turns counterclockwise with the same limit direction.)

Thus, the extremal control has the following structure: if 0 < s ≤ arctan 2 (see Fig. 1), then
ψ(τ, s) lies in the angle BOD for all τ (τ ≥ 0), and, hence, w̄(τ, s) is a point of the arc AD such
that its projection to the direction ψ(τ, s) is maximal (the analytical expression for w̄(τ, s) is given
in Table 1).
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Table 1. The analytical expression for w̄1(τ, s) and w̄2(τ, s).

w̄1(τ, s) w̄2(τ, s)

−π

2
< s ≤ −π

4

0 if 0 ≤ τ ≤ τ∗∗,
3(2− e−8τ tan s)M if τ∗∗ ≤ τ

−1 if 0 ≤ τ ≤ τ∗∗,
M if τ∗∗ ≤ τ

−π/4 < s < 0 3(2− e−8τ tan s)M M

s = 0 2
√
3/3

√
3/9

0 < s ≤ arctan 2 3(2− e−8τ tan s)M M

arctan 2 < s <
π

2

0 if 0 ≤ τ ≤ τ∗,
3(2− e−8τ tan s)M if τ∗ ≤ τ

1 if 0 ≤ τ ≤ τ∗,
M if τ∗ ≤ τ

s = π/2 0 1

Table 2. The analytical expression for x1(τ, s) and x2(τ, s).

x1(τ, s) x2(τ, s)

−π

2
< s ≤ −π

4

0 if 0≤τ≤τ∗∗,

3eτ

4 tan s

n
∫

m

1− p2

p2q7
dp if τ∗∗≤τ

(e9τ − 1) /9 if 0≤τ≤τ∗∗,

e9τ

4 tan s

n
∫

m

qdp if τ∗∗ ≤ τ

−π/4 < s < 0
3eτ

4 tan s

n
∫

m

1− p2

p2q7
dp

e9τ

4 tan s

n
∫

m

qdp

s = 0 2
√
3(1− eτ )/3

√
3(1− e9τ )/81

0<s≤ arctan 2
3eτ

4 tan s

n
∫

m

1− p2

p2q7
dp

e9τ

4 tan s

n
∫

m

qdp

arctan 2<s<
π

2

0 if 0≤τ≤τ∗,

3eτ

4 tan s

n
∫

m

1− p2

p2q7
dp if τ∗ ≤ τ

(1− e9τ ) /9 if 0≤τ≤τ∗,

e9τ

4 tan s

n
∫

m

qdp if τ∗ ≤ τ

s = π/2 0 (1− e9τ ) /9

Further, in the case arctan 2 < s < π/2, we have w̄(τ, s) = (0, 1) on the interval [0, τ∗), where
τ∗ = −1/8 · log(2 cot s). At the time τ = τ∗, the vector ψ(τ, s) becomes orthogonal to the right
side tangent to the curve ∂P at the point (0, 1) and it occurs “switching” of the extremal control
from the value (0, 1) to a continuous mode. Namely, w̄(τ, s) begins sliding along the arc AC (see
Table 1) and tends to the point C as τ → +∞.

Similarly, if (−π/2 < s < −π/4) , then w̄(τ, s) = (0,−1) at 0 ≤ τ < τ∗∗, where τ∗∗ =
−1/8 · log(− cot s) and w(τ, s) is a switching time. On the interval (τ∗∗,+∞), w̄(τ, s) slides along
the arc ED tending to the point D.

The entire synthesis of the extremal control is given in Table 1. Due to the central symmetry,
the values of s are considered only on the range −π/2<s≤π/2 and the following notation is used:

M = (3− e−8τ tan s)−3/2, m = (3e8τ cot s− 1)−1/2, n = (3 cot s− 1)−1/2,

p = (3− e−8τ tan s)−1/2, q = ((3− p−2) cot s)1/8.
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Now, extremal trajectories can be easily calculated by (3.2). The corresponding formulas are
gathered in Table 2. They are illustrated in Fig. 2.

Figure 2. The extremal trajectories.

*
t

t

Figure 3. The graphs of the functions w̄1(τ, s) (the continuous line) and w̄2(τ, s) (the dashed line) for
arctan 2 < s < π/2.

4. Construction of a suboptimal control in the initial problem

Let us now derive the solution of problem (2.1), (2.3), (2.5) basing one of reduced problems.
Extremals x(t, s), y(t, s) cover R2. Therefore, for every (x10, x

2
0) ∈ R2 \ (0, 0), there exists a pair

(τ0, s0) such that x1(τ0, s0) = x10, x
2(τ0, s0) = x20. Further, in the system (3.1), for every fixed

(x10, x
2
0) 6= 0, an optimal control is unique, which implies the uniqueness of the value τ0 (while

corresponding values of s0 may be not unique, but one can choose any of them).
Then T (x10, x

2
0) = τ0 is the transition time and

v̄1(t) = v1(τ0 − t, s0), v̄2(t) = v2(τ0 − t, s0)
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**
t

t

Figure 4. The graphs of the functions w̄1(τ, s) (the continuous line) and w̄2(τ, s) (the dashed line) for
−π/2 < s < arctan 2.

is the suboptimal control for (2.1).

Let us now consider system (2.5). For an initial point (y0k, y
0
3k), the corresponding trajectory

(yk(t), y3k(t)) satisfies the condition

yk(Tk) = y3k(Tk) = 0,

where

Tk(µk) =
1

k2

(k2

µk
y0k,

k2

µk
y03k

)

.

The constructed synthesis implies that Tk is monotonically decreasing in µk, and it is easy to see
that Tk → 0 as µk → +∞ and Tk → ∞ as µk → 0. Therefore, for every k, there exists a unique
value µ∗k such that Tk(µ

∗
k) is the same for all k. Moreover, µ∗k can be chosen satisfying the condition

∑

µ∗k = v0. One can easily see that
α

k2
≤ µ∗k ≤ β

k2

for some positive α and β.

Finally, we consider the initial problem (2.1), (2.3), (2.5). Let u0(x) =
∑∞

k=1 u
0
k sinx be the

Fourier expansion of the initial function u0(x). Taking (y0k, y
0
3k), k ∈ Q, as an initial point for

system (2.6), we find

w̄0
k(t) =

1

µk
v̄1k(t), w̄0

3k(t) =
1

µk
v̄2k(t), k ∈ Q.

Thus, the following statement holds.

Theorem 1. The function

v̄(t, x) =

∞
∑

k=1

w̄0
k(t) sin kx

is a suboptimal control in problem (2.1) for the initial state u0(x).

5. Conclusion

The paper is devoted to the time-optimal problem for the process of heat conductivity in a
rod when the control parameter is the intensity of external heat sources. A suboptimal control is
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constructed by the combination of the Chernous’ko approach with the method of grouping terms
of the Fourier expansion.

This method may be applied to the time-optimal control problem for other systems given in an
evolutionary form.

The following question naturally arises: how effective is the method of grouping? First of all, let
us bring general considerations. The set of all admissible controls in the initial problem (1.1)–(1.2)
can be identified with the subset

UInitial =
{

u ∈ l2 | sup
0≤x≤π

|
∞
∑

k=0

uk sin kx| ≤ v0

}

.

As noted in Section 1, Chernous’ko restricted the set of controls using

UCh =
{

u ∈ l2 | |uk| ≤ Uk, k = 1, 2, 3, . . .
}

,

where Uk is a sequence chosen from the condition
∑

Uk ≤ v0 and guaranteeing the equality
u(t, x) ≡ 0 for some T = TCh > 0.

The considerations in this paper are based on the set

Ugr =
{

u ∈ l2 | max
0≤x≤π

|uk sin kx+ u3kx sin 3kx| ≤ Uk

}

taken as a region of admissible controls.
One can easily see that

Ugr ⊂ UCh ⊂ UInitial.

These relations imply T2 ≤ T1 ≤ T0 for optimal and suboptimal times of transition respectively.
If one takes an initial point of the form (0, 0, . . . , x0m, 0, . . . , 0), i.e., in terms of the initial prob-

lem (1.1)–(1.2), ϕ(x) = (0, 0, . . . , x0m sinmx, 0, . . . , 0), then, obviously, UInitial = UCh = Ugr and,
thus, T2 = T1 = T0. But if an initial point is taken in the form (0, 0, . . . , 0, x0k, 0, . . . , 0, x

0
3k, 0, . . .),

then UIn=Ugr while UIn⊃UCh and, thus, T2 = T0 < T1. Table 3 contains values for specific cases.

Table 3

Initial point T1 T0 = T2

(1, 0, 1, 0, 0, 0, . . .) 0.7 0.64
(1, 0, 2, 0, 0, 0, . . .) 0.67 0.61
(1, 0,−1, 0, 0, 0, . . .) 0.72 0.65
(1, 0,−2, 0, 0, 0, . . .) 0.69 0.62

Obviously, x0k 6= 0 at least for three values of the index k when T2 < T0 < T1.
The final note is that the method of grouping can be applied only if there some algebraic

relations between the eigenfunctions of the operator A.
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